
E+1. Find all positive integers n such that ⌊
√
n⌋+

⌊
n

⌊
√
n⌋

⌋
> 2

√
n.

If k is a real number, then ⌊k⌋ means the floor of k, this is the greatest integer less than or equal to k.

Solution:
Answer:
Numbers of the form x(x+ 1) and x(x+ 2), where x is an arbitrary positive integer.

Solution:
Let ⌊

√
n⌋ = s, where s is a positive integer. Then s ≤

√
n < s+ 1, so s2 ≤ n < (s+ 1) = s2 + 2s+ 1.

Since n and s are integers, n ≤ s2 + 2s = s(s + 2), so s2 ≤ n ≤ s(s+ 2), this means ⌊ n
⌊
√
n⌋⌋ = ⌊ns ⌋.

We look for n positive integers for which s + ⌊ns ⌋ > 2
√
n. There are two cases depending on whether

or not s divides n.
If s divides n, s2 ≤ n ≤ s(s+ 2) so n = s2, n = s(s + 1) or n = s(s + 2). For the first of

these
√
n = s = ⌊

√
n⌋ = ⌊ n

⌊
√
n⌋⌋, so that ⌊

√
n⌋ + ⌊ n

⌊
√
n⌋⌋ = 2

√
n, there is equality. If n = s(s + 1),

then ⌊ n
⌊
√
n⌋⌋ = ⌊ s(s+1)

s ⌋ = s + 1. Thus ⌊
√
n⌋ + ⌊ n

⌊
√
n⌋⌋ = s + (s + 1) = 2s + 1 =

√
4s2 + 4s+ 1 and

2
√
n =

√
4s2 + 4s, so ⌊

√
n⌋+ ⌊ n

⌊
√
n⌋⌋ > 2

√
n for the numbers of the form s(s+1), where s is a positive

integer. If n = s(s+2), then ⌊ n
⌊
√
n⌋⌋ = ⌊ s(s+2)

s ⌋ = s+2. Thus ⌊
√
n⌋+ ⌊ n

⌊
√
n⌋⌋ = s+ (s+2) = 2s+2 =

√
4s2 + 8s+ 4 and 2

√
n =

√
4s2 + 8s, so ⌊

√
n⌋+ ⌊ n

⌊
√
n⌋⌋ > 2

√
n for the numbers s(s+ 2), where s is a

positive integer. (In all cases we use that out of two positive real number, the larger has larger square.)
If s does not divide n, from s2 ≤ n ≤ s(s+ 2) we get that s2 < n < s(s+1) or s(s+1) < n < s(s+2).

In the first case ⌊ n
⌊
√
n⌋⌋ = ⌊ns ⌋ = s, so ⌊

√
n⌋ + ⌊ n

⌊
√
n⌋⌋ = s + s = 2s, while s2 < n. Then s <

√
n, so

⌊
√
n⌋+⌊ n

⌊
√
n⌋⌋ = 2s < 2

√
n. In the second case ⌊ n

⌊
√
n⌋⌋ = ⌊ns ⌋ = s+1, so ⌊

√
n⌋+⌊ n

⌊
√
n⌋⌋ = s+(s+1) =

2s+ 1, while from s2 + s < n, (s+ 0, 5)2 = s2 + s+ 0, 25 < n because s2 + s and n are integers. Thus
s+0, 5 <

√
n, therefore ⌊

√
n⌋+ ⌊ n

⌊
√
n⌋⌋ = 2s+1 < 2

√
n. So if s does not divide n, the right-hand side,

2
√
n is the greater.
In summary for a positive integer n, ⌊

√
n⌋+ ⌊ n

⌊
√
n⌋⌋ > 2

√
n is satisfied exactly if n = x(x+ 1) for

some positive integer x or n = y(y + 2) for some positive integer y.
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E+2. We say that a graph G is divisive, if we can write a positive integer on each of its vertices such that all the
integers are distinct, and any two of these integers divide each other if and only if there is an edge running between them
in G. Which Platonic solids form a divisive graph?

Solution: Direct the edges of our graph in a way such that each edge points towards the number which
is divisible by the number on the start of the edge. A finite graph is divisive if and only if the edges can
be directed in a way that the directed graph exactly forms the relationships of a partially ordered set.
Our first observation is that a divisive graph can not contain an odd cycle of length at least 5 as an
induced subgraph. This is because two adjacent edges would be directed in the same direction hence
creating a new edge (a diagonal of the cycle) and so the cycle wouldn’t be an induced subgraph.

Now we will answer the cases one by one:

• Tetrahedron: We can get a construction by writing different powers of 2 on all nodes.

• Hexahedron: This is a bipartite graph, so let us form two classes of nodes such that there is no
edge running inside any of the classes. We write different prime numbers on the nodes of the first
class, and we write the product of the three adjacent primes to the nodes of the second class.

• Octahedron: If the octahedron is put on one of its vertices, there is a single top and bottom
vertex and there is a square in the middle layer. The four nodes of the square shall be filled with
numbers 2, 12, 3, 18 respectively. The bottom vertex shall be given number 36 · 5 = 180 and we
assign 36 · 7 = 252 to the top vertex. This way, all nodes in the middle layer will divide the top
and bottom vertices, but these two won’t divide each other.

• Dodecahedron: The graph of the dodecahedron is not divise, beacause it contains a pentagon
as an induced subgraph (any 5 points lying on the same face of the hexagon form a pentagon).

• Icosahedron: The graph of the icosahedron is not divise, beacause it contains a pentagon as an
induced subgraph (the neighbours of any vertex form a pentagon in this case).
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E+3. Let n ≥ 3 be an integer and A be a subset of the real numbers of size n. Denote by B the set of real numbers
that are of the form x · y, where x, y ∈ A and x ̸= y. At most how many distinct positive primes could B contain
(depending on n)?

Solution: Let us regard the prime elements of set B, for all p ∈ B pick a pair (x, y) from set A for
which xy = p. Then we create the following graph G: the vertices are the elements of set A, and two
vertices are connected by an edge if and only if (x, y) is a pair that we picked earlier. It is clear that
the number of edges in G is exactly the number of prime elements in B.

Now we claim that in G there is no closed walk of even length with an edge that has been only visited
once. For the contrary suppose that such a walk exists and let its vertices be c0, c1, c2 . . . c2k, where
c0 = c2k. Let also x0, x1, x2 . . . x2k be the numbers from A corresponding to vertices c0, c1, c2 . . . c2k
(meaning that x0 = x2k). Since cici+1 is an edge in G, xi · xi+1 is prime for all 0 ≤ i < 2k. Now let us
consider the product

∏2k
i=1 xi, we will write it two different ways:

2k∏
i=1

xi =

k∏
i=1

x2i−1 · x2i =
k−1∏
i=0

x2i · x2i+1.

Since we know that the product of xi and xi+1 is always prime, thus both
∏k

i=1 x2i−1 · x2i and∏n−1
i=0 x2i · x2i+1 are the products of k (not necessarily different) primes. But since we assumed that

there exists an edge of the walk that we only passed once, this prime would divide one of the products
but not the other, which is a contradiction by the fundamental theorem of number theory.

Now we will show that G has at most n edges. For this it is enough to show that otherwise it
contains a walk of even length with an edge that is visited only once. Suppose indirectly that G has at
least n+1 edges. Then pick a component of G that has more edges than vertices. Since we can always
find such a component by the pigeonhole principle, we can assume that G is connected.

It is clear that G cannot contain a cycle of even length, since then this would form an undersired
walk. But since G has more than n− 1 edges, it must contain a cycle. Let the vertices of this cycle be
c0, c1, c2 . . . cl where c0 = cl. Now erase the edge c0c1 from the graph. Since the graph will still contain
at least n− 1 edges, it will stay connected and we can find another cycle. Let the vertices of this cycle
be b0, b1 . . . bk where b0 = bk. Since G remained connected after ereasing the edge c0c1, can find a path
between c0 and b0, let its vertices be c0 = a0, a1, . . . am = b0. Since we know that G does not contain
a cycle of even length, both n and k must be odd. Now consider the following closed path:

c0, c1 . . . cl = c0 = a0, a1 . . . am = b0, b1 . . . bk = b0 = am, am−1, . . . a0 = c0.

This is clearly a closed path and it has exactly l+m+ k+m vertices, which is even. We also know
that the path passes through c0c1 only once since the second cycle was constructed without this edge
in the graph. Therefore we have obtained a path of even length with an edge that has only been visited
once, which is a contradiction.

Thus we have shown that G can have at most n edges, therefore B cannot have more than n prime
elements. Now we just need to construct a set A for which B has exactly n prime elements.

Let p1, p2 . . . pn the first n primes and let the elements of A be as follows: x1 =
√
p3p2√
p1

, x2 =
√
p1p3√
p2

and x3 =
√
p1p2√
p3

. From this on define the elements of A recursively: let for every n − 1 ≥ k ≥ 3

be xk+1 =
pk+1

xk
. (Since none of the xk are 0, this recursive formula is valid). Then the products

x2 · x3, x3 · x1, x1 · x2 and x3 · x4, x4 · x5 . . . xn−1 · xn equal to primes p1, p2 . . . pn, therefore we have
shown that there could be at most n distinct positive primes in B.
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E+4. We are given an angle 0◦ < φ ≤ 180◦ and a circular disc. An ant begins its journey from an interior point of
the disc, travelling in a straight line in a certain direction. When it reaches the edge of the disc, it does the following: it
turns clockwise by the angle φ, and if its new direction does not point towards the interior of the disc, it turns by the
angle φ again, and repeats this until it faces the interior. Then it continues its journey in this new direction and turns as
before every time when it reaches the edge. For what values of φ is it true that for any starting point and initial direction
the ant eventually returns to its starting position?

Solution: The answer is the ant only returns if φ = 90◦ or φ = 180◦. In the second case, after it
reaches the edge of the disc, it goes back on the same chord, and will return to its initial position,
regardless of its starting position and initial direction. If φ = 90◦, we have two cases depending on
whether it turns once or twice the first time it reaches the edge. It cannot turn more, as after two
turns, the direction is pointing back to just where it came from. Clearly, if it turns twice, it is the same
case as when φ = 180◦.

In case it turns only once, its path will be the inscribed rectangle which has initial chord (on which
the ant starts moving) as a side. This is because initially it is true, and whenever it reaches the edge, it
can only continue its journey on the same line as it came from or on the other side of the rectangle at
that point. After reaching the edge the first time it will travel in the negative direction on the perimeter
of the rectangle.

Now we prove that if φ is not 90◦ or 180◦, then there is a starting point and direction so that the
ant never returns there. For a contradiction assume that for a certain such φ the ant returns to its
starting point regardless of the starting point and direction.

Observe that two non-identical chords intersect at most at one point, that there are uncountably
many points on a chord, and that the ant’s journey consists of countably many chords. If we could
choose a starting chord and direction along it so that the ant would never go on that chord, then
we could choose a starting point on that chord that the other chords in the journey don’t contain,
contradicting our assumption. Therefore for this φ, for any starting point and initial direction, the ant
has to return to the chord during its journey.

Since it must return an infinite numer of times because of this, there will be two instances when it
goes in the same direction through the chord. Without loss of generality, we may assume that it is the
nth chord when it first travels through the initial chord again in the initial direction. It is easy to see
that the (n+k)th chord will be the same as the (1+k)th chord, since the chord and direction determine
the next chord and direction. Because of this, whenever the ant returns to the first chord in the initial
direction it must come from the same chord and direction. So if we can show a second chord, which
would be the second chord for two different initial chords, we get a contradiction, as only one of those
two chords can be in the cycle we get when we start the ant from the second chord. Starting from the
other initial chord, the ant gets into the cycle which doesn’t include that initial chord. Contradiction.
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Draw the tangent to the disc from an arbitrary edge point and measure the angles as in the above
figure, where εφ is small enough. The figure will be similar to the above (except for that the dashed
and the vector chords may coincide or can switch order) when φ − εφ, εφ and φ are positive and
εφ+φ < 180◦. For example εφ = min

(φ
2 ,

180◦−φ
2

)
works. In this case, we can see that using the dashed

or solid chord as the initial chord and directing the initial direction towards the point results in the
vector chord as the second chord. Contradiction.

Note: The reason why the above proof doesn’t work for 90◦ is that that is the case when the dashed
and the vector lines coincide, or equivalently when the initial chord is also the second chord. In this
case, this is the chord from which it never returns directly to the second chord, but it agrees with it.
This is only true when 2φ = 180◦, so no other cases are affected.
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E+5. Consider an acute triangle ABC. Let D, E and F be the feet of the altitudes through vertices A, B and C.
Denote by A′, B′, C′ the projections of A, B, C onto lines EF , FD, DE, respectively. Further, let HD, HE , HF be the
orthocenters of triangles DB′C′, EC′A′, FA′B′. Show that

HDB2 +HEC
2 +HFA

2 = HDC2 +HEA
2 +HFB

2.

Solution: First of all, let’s create a diagram. Denote by H the orthocenter of triangle DEF . We are
going to prove that HHD ⊥ BC, HHE ⊥ CA and HHF ⊥ AB.

By symmetry, it is enough to prove that HHD ⊥ BC. Let M be the midpoint of side BC. We
will show that the Miquel point of quadrilateral B′C ′EF (that is the second intersection of circles
(DB′C ′), (DEF )) is in fact, point M . It is well-known that the nine-point circle of a triangle passes
through the feet of the altitudes and the midpoints of the sides. Thus, circle (DEF ) goes through
M . Denote by O the circumcenter of triangle ABC. We will first show that lines BB′, CC ′ inter-
sect at O. Again by symmetry, it suffices to show that B,B′, O are collinear or its equivalent form:
∠DBB′ = ∠CBO. Since quadrilateral ACDF is cyclic, applying the inscribed angles theorem we get

∠DBB′ = 90◦ − ∠B′DB = 90◦ − ∠FDB = 90◦ − ∠BAC =
180◦ − 2∠BAC

2
=

180◦ − ∠BOC

2
=

∠CBO because BO = CO. (One can show the previous collinearity by noticing that in the cyclic
quadrilateral ACDF lines AC,DF are antiparallel and lines BO,BH ′ are isogonal - where H ′ denotes
the orthocenter of triangle ABC - so BH ′ ⊥ AC =⇒ BO ⊥ DF ). Therefore, both B′ and C ′ lies on
the circle with diameter DO, which passes through M as O lies on the bisector of segment BC.

It is well-known that in a triangle with orthocenter K, the Simson-line of a point P on the cir-
cumcircle halves segment PK. Since M lies on circles (DB′C ′), (DEF ), the reflections of M onto lines
DE,DF lie on HHD. Also, it is known that in triangle DEF the inner angle bisectors are precisely
the altitudes, while the external angle bisectors are precisely the sidelines of triangle ABC. Thus, M
lies on the external angle bisector of ∠EDF , implying that the line connecting the reflections of M
onto lines DE,DF is perpendicular to the bisector (since if we reflect any of the reflections on the
bisector, we must get the other reflection). Indeed, HHD ⊥ BC.

To finish the proof, we will use a well-know lemma stating that PQ ⊥ AB ⇐⇒ PA2 − PB2 =
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QA2 −QB2 (the proof of which is an easy application of the Pythagorean theorem). This means that

HHD ⊥ BC =⇒ HB2 −HC2 = HDB
2 −HDB

2

HHE ⊥ CA =⇒ HC2 −HA2 = HEC
2 −HEA

2

HHF ⊥ AB =⇒ HA2 −HB2 = HFA
2 −HFB

2 +

0 = HDB
2 −HDC

2 +HEC
2 −HEA

2 +HFA
2 −HFB

2.

Therefore, HDB
2 +HEC

2 +HFA
2 = HDC

2 +HEA
2 +HFB

2.
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