
E+1. Show that for every positive real number r, the perimeter of a rectangle of size 1× r can be covered by pairwise
non-intersecting circles of radius 1.
The circles can be tangent to each other.

Solution: Consider the rectangle on a grid with vertices at points (−1
2 , 0), (

1
2 , 0), (−

1
2 , r), (

1
2 , r).

Let the centres of the unit circles be the points of the form (−1
2 , (2k−

1
2)
√
3), (12 , (2k−

1
2)
√
3) and

(0, (2k + 1
2)
√
3) where k is an integer.

These circles cover the side of length r since they are tangent to each other at points of the form
(−1

2 , k
√
3), (12 , k

√
3), (2k

√
3, 0) where (k is an integer). This means that the circles cover the lines

y = −1
2 and y = 1

2 and the longer sides of the rectangle are on this line.
Now we only have to cover the sides of length 1. The (−1

2 , 0)(
1
2 , 0) side can be covered by the

circle with centre (0, 12
√
3). Let us call a positive number z good if there exists an integer k such that

|z − (2k + 1
2)
√
3| ≤

√
3
2 . This is equivalent to the circles covering the segment (−1

2 , z)(
1
2 , z). The good

numbers are a union of closed intervals of length
√
3 and the non good numbers are a union of open

intervals of length
√
3.

If r is good, then we are done, but if r is not good, then there exists a real number 0 < l <
√
3 for

which |(r + l) − (2k + 1
2)
√
3| ≤

√
3
2 because of the lengths of the intervals. If now we translate all of

the cirlces by l parallel to the y axis in the positive direction, then we obtain a desired covering of the
perimeter of the rectangle.
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E+2. a) Find all solutions to the equation a2 + b2 + c2 = abc, where a, b and c are positive primes.
b) Prove that for every positive integer N there exist integers a, b, c ≥ N that satisfy the equation a2 + b2 + c2 = abc.

Solution: a) Consider the equation modulo 3. If p ̸= 3 prime, then p2 ≡ 1 (mod 3). Therefore if none
of the primes are 3, the left hand side is divisible by 3, it is a contradiction. So at least one of the
primes is equal to 3, and the right hand side is divisible by 3. By the above, the left hand side can only
be divisible by 3 if a = b = c = 3. These numbers satisfy the equation.

b) Suppose that (a, b, c) is a solution, with a ≤ b ≤ c. Then

f(x) = x2 − bcx+ b2 + c2

is a monic quadratic polynomial in Z[x] with an integer root. Then the other root a′ is integer as well as
the sum of the two roots is bc by the Viéte formulas. Hence (a′, b, c) is a solution to the original equation
as well. We also have a′ = b2+c2

a > a, again by Viéte formulas, so we found another solution where we
managed to increase the minimal value of (a, b, c) and leave the other two values the same. Starting
from the solution (3, 3, 3), and repeating the above 3N − 9 times we get a solution with a, b, c ≥ N .

The method used to solve part b) is called Viéte jumping.
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E+3. At the end of the first quarter of the Greece-Egypt basketball game, the score was 26-25. During the first
quarter, Áron wrote down the total number of points of the Greeks after every Greek basket, while Benedek wrote down
the total number of points of the Egyptians after every Egyptian basket. In the break they noticed that there is no
number that both of them wrote down. In how many ways could they have written down the numbers, if there were 21
baskets, and every basket was a 2-pointer or a 3-pointer?
Two options are different if at least one of them wrote down different numbers.

Solution: Write down the numbers from 1 to 26 and colour red the numbers, that Áron has written
down and colour blue the numbers, that Benedek has written down. We know that there is no number,
that was written down by both Áron and Benedek, so every number was coloured at most once. Then
erase the numbers that haven’t been coloured. We know that there were 21 buckets, so we have 5
erased numbers.

It is easy to see that the remaining numbers are coloured red and blue by alternating pattern. Let’s
take a look at the erased numbers. We know that 1 is erased, therefore 2 and 3 must be coloured, and
also the numbers 25 and 26 are coloured. Two erased numbers must have a difference of at least 3,
because otherwise there would be two adjacent numbers with the same colour with a difference of at
least 4.

If we know the erased numbers we can reconstruct what numbers they have written down. We must
colour the numbers alternating in such way, that the last number, 26 is red. If the difference of any
two erased numbers is at least 3, then this will be possible.

Therefore, we need to select 4 numbers from 4 to 24, such that every two numbers has a difference
at least 3. This is equivalent to the problem that we must select 4 numbers from 4 to 18, because if we
selected the numbers a < b < c < d for the second problem, then the a, b+2, c+4, d+6 selection will
be good for the first problem, and vice versa. Hence the answer is

(
15
4

)
.
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E+4. For an integer n ≥ 2, the n-level pyramid consists of 12 + 22 + 32 + · · · + n2 cubes of size 1 m × 1 m × 1 m,
and each cube is made of marble or sandstone. On the kth level, the cubes are arranged in a square grid of size of
(n + 1 − k) × (n + 1 − k), and the centers of these grids fall on the same vertical line for all 1 ≤ k ≤ n. In addition,
the cube faces are parallel, hence each cube of the pyramid is either on the ground or stands on 4 other cubes. The top
cube is made of marble, and to ensure the stability of the building, it is true for every marble cube that it is either on
the ground or at least 3 out of the 4 cubes on which it stands are marble. What is the least possible number of marble
cubes in the pyramid?

Solution: Answer: There are at least n2 marble cubes.
Construction for n2 marble cubes: On all levels put marble cubes on the diagonal starting from the

southwest corner and going to the northeast corner, also put marbles on the diagonal on the east side
of this diagonal. Then we have n2 marble cubes in total and all of the properties are satisfied.

Proof that we can’t have less than n2 marble cubes: We will prove that on the level with k × k
cubes, we have at least 2k − 1 marble stones. We prove 2 propositions first:

Proposition 1: In an optimal construction, on each level, the set of marble cubes forms a connected
set, where we consider 2 cubes adjacent if they share a side. We prove this by induction going from
top to bottom. It is clear that the top level is connected. Using the fact that each marble stone has
at least 3 marble cubes below it, we clearly get the induction step. Note that if we had a marble cube
with no marble cube on top, we could replace it with sandstone and get another allowed construction
with less marble.

Proposition 2: For the set of k × k cubes, there is at least 1 marble stone on each side. We prove
this by induction again. For the top layer, this is clear. If we have a cube on the side from the k− 1-th
layer, then there are 2 cubes below it in the next level, being on the same side. At least one is marble,
so we are done by induction.

Combining the two propositions, we know that on the level of k × k cubes, there is a path from
south to north and a path from east to west using only marble stones. These both have at least k − 1
south-north and k− 1 east-west steps. We count the number of sides of the marble stones on this level
that is not horizontal. From these steps, we get 2 · 2(k− 1) of them. Looking at the level from the four
directions, we see k sides from each direction, each of them is disjoint from each other. Hence there
are at least 4k + 2 · 2(k − 1) not horizontal sides on this level, corresponding to 2k − 1 marble cubes.
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E+5. Let ABC be an acute triangle and let O be its circumcentre. Let OA, OB and OC be the circumcentres of
triangles BCO, CAO and ABO respectively. Prove that lines AOA, BOB and COC are concurrent.

First solution:
Denote the feet of altitudes of triangle ABC by TA, TB and TC , respectively. Let H be the ortho-

centre, A′ be the midpoint of AH and N be the centre of the nine-point circle of △ABC. Define f
as the composition of the homothety with centre A and ratio ATB

AB and the reflection over the angle
bisector of ∠BAC.

It is easy to see that f takes B to TB. Since △ABC ∼ △ATCTB (as they have equal angles) and
since f is a similarity, f takes C to TC . Observe that TC and TB lie on the circle with diameter AH,
thus the circumcentre of ATCTB triangle is A′. However, f is a similarity, so it takes the circumcentre
of triangle ABC, O, to the circumcentre of triangle ATCTB, which is A′. So f takes O to A′.

By the above, f takes triangle BCO and its circumcircle to triangle TBTCA
′ and its circumcircle.

Knowing that A′ is on the nine-point circle of triangle ABC, circle BCO is sent to the nine-point circle
of ABC by f . So f takes OA to N .

As f takes A to itself, the image of line AOA is AN . Since a homothety with center A maps AOA

to itself, we have that lines AOA, AN are symmetric w.r.t. the angle bisector of ∠BAC. Thus, line
AOA passes through the isogonal conjugate of N . The argument above holds for the other two lines,
BOB and COC , hence they all pass through the isogonal conjugate of the nine-point circle.

Note: The point of concurrency has a name too, Kosnita point. (In the Encyclopedia of Triangle
Centers it is denoted by X54.) As we have seen from the proof above, it is the isogonal conjugate of
the nine-point centre. The statement of the problem (also known as Kosnita’s theorem) is due to the
Romanian mathematician, Cezar Coşniţă.
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Second solution:
First of all, note that the segment bisector of AO passes through points OB, OC as they are

circumcentres of two circles having segment AO as a side. Thus, AO ⊥ OBOC . Similarly, BO ⊥ OCOA

and CO ⊥ OAOB. This means that ∠OCOAB = 90◦ −∠OABO. However, OBOAC is a kite (because
OB = OC and OAB = OAC as they are radii), so 90◦ − ∠OABO = 90◦ − ∠OACO = ∠OBOAC.
Similarly, ∠OAOBC = ∠OCOBA and ∠OBOCA = ∠OAOCB

Let A′ = AOA∩OBOC , B′ = BOB∩OCOA and C ′ = COC ∩OAOB. Further, denote by α, β, γ the
equal angles proven previously around points OA, OB, OC , respectively (in the figure they are shown
by different colours).

Using the sine rule first on triangles AOBA
′, AOCA

′, then on triangles AOAOB, AOAOC , we get

OBA
′

OCA′ =

sin∠A′AOB
sinβ ·AA′

sin∠A′AOC
sin γ ·AA′

=
sin γ

sinβ
·sin∠A

′AOB

sin∠A′AOC
=

sin γ

sinβ
·
OAOB
AOA

· sin∠AOBOA

OAOC
AOA

· sin∠AOCOA

=
sin γ

sinβ
·OAOB · sin∠AOBOA

OAOC · sin∠AOCOA
.

Similarly, we have

OCB
′

OAB′ =
sinα

sin γ
· OBOC · sin∠BOCOB

OBOA · sin∠BOAOB
and

OAC
′

OBC ′ =
sinβ

sinα
· OCOA · sin∠COAOC

OCOB · sin∠COBOC
.

However, due to the equal angles we get ∠AOBOA = ∠COBOC , ∠BOCOB = ∠AOCOA and
∠COAOC = ∠BOAOB, so multiplying the three equations from before yields

OBA
′

OCA′ ·
OCB

′

OAB′ ·
OAC

′

OBC ′ = 1.

Therefore, due to the converse of Ceva’s theorem we have proved the desired concurrency.

Note: The proof above basically shows Jakobi’s theorem.
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E+6. Game: There are four piles of discs given, numbered from 1 to 4. Every turn the current player chooses
integers m and n that satisfy 1 ≤ m < n ≤ 4 and takes m discs from pile number n and distributes them into the piles
n− 1, n− 2, . . . , n−m by adding one disc to every pile. The player that has no available moves loses.
Beat the organisers in this game twice in a row! Based on the number of discs in the piles you can decide if you would
like to be the first or the second player.

Solution: The second player has a winning strategy if and only if the number of discs in pile number
2 is even and in pile number 4 is congruent to 0 or 2 modulo 5 or if there are odd in pile number 2, and
congruent to 1 modulo 5 in pile number 4. We only need to see that from a winning state we cannot
step into a winning one but can always from a losing one.

If we are not in a winning state, then we can always get to a winning state as if the number of
discs in pile 4 is congruent to 3 or 4 modulo 5, then by taking away 2 or 3 discs from this pile then the
parity of the number of discs will change in pile 2, and we can choose which of 5k and 5k+1 or 5k+1
and 5k + 2 fits our strategy. If in pile 4 the number of discs is congruent to 0 or 2, then there is an
odd number in pile 2, therefore by taking away one from there, we get to a winning state. And lastly
if there is 1 modulo 5 in pile 4, then by taking away one disc from pile 4 we again get to a winning
state as there has to be an even number of discs in pile 2.

From a winning state we cannot get to a winning state as if they take away from piles 2 or 3 then
pile 4 does not change but the parity changes in pile 2. If they take away from pile 4 not resulting in 3
or 4 modulo 5, then if there was 0 modulo 5, then 3 has to be taken away, and that changes the parity
of pile 2, and if there was 1 or 2 modulo 5, then by taking away only one disc, the parity of pile 2 does
not change, and by taking away 2 the parity of pile 2 changes, so it is easy to see that we always get
to a losing state.

The game is clearly finite, so we are done.
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