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E+1. There are 100 merchants selling salmon for Dürer dollars around the circular shore of the island of Dürerland.
Since the beginning of times good and bad years have been alternating on the island. (So after a good year, the next year
is bad; and after a bad year, the next year is good.) In every good year all merchants set their price as the maximum
value between their own selling price from the year before and the selling price of their left-hand neighbour from the
year before. In turn, in every bad year they sell it for the minimum between their own price from the year before and
their left-hand neighbour’s price from the year before. Paul and Pauline are two merchants on the island. This year Paul
is selling salmon for 17 Dürer dollars a kilogram. Prove that there will come a year when Pauline will sell salmon for 17
Dürer dollars a kilogram.
The merchants are immortal, they have been selling salmon on the island for thousands of years and will continue to do
so until the end of time.

Solution: During the proof, indices are always used modulo 100. Number the merchants from 1 to 100, starting
from some merchant and proceeding to the left. Let a1, a2, ..., a100 denote the salmon prices in one specific year,
called year A, and let b1, b2, ..., b100 denote the salmon prices in the year immediately following year A, called
year B. Finally let c1, c2, ..., c100 denote the prices in the year C immediately following year B. The conditions
of the problem can be reworded to say that for every 1 ≤ i ≤ 100, bi = max(ai, ai+1) if year B is good, and
bi = min(ai, ai+1) if year B is bad; and the transition between years B and C can be described similarly.

Suppose that year B is good. Observe that in this case there cannot be an index i such that bi−1 < bi and
bi+1 < bi, since

max(bi−1, bi+1) = max(ai−1, ai, ai+1, ai+2) ≥ max(ai, ai+1) = bi.

So in a good year, no merchant can have a price strictly greater than both neighbours’ prices, and similarly
in a bad year, no merchant can have a price strictly lower than both neighbours’ prices.

If we use this observation for bad year A, this means that for every i, at least one of bi = max(ai, ai+1) and
bi+1 = max(ai+1, ai+2) is equal to ai+1. Furthermore it is clear that both quantities are at least ai+1, so

ci = min(bi, bi+1) = ai+1.

So in year C, all merchants will use exactly the same prices as what their left-hand neighbour used two
years ago. Clearly this justification is valid for any year: in particular, a similar reasoning can be used if A and
C are good years and B is bad.

So if Pauline is k spaces to the right of Paul along the shore of the island, then after 2k years Pauline will
sell salmon for 17 Dürer dollars.
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E+2. One quadrant of the Cartesian coordinate system is tiled by dominoes of size 1 cm× 2 cm. The dominoes don’t
overlap with each other, they cover the entire quadrant and they all fit in the quadrant. Farringdon, the flea is sitting
at the origin in the beginning and is allowed to jump from one corner of a domino to the opposite corner any number
of times. Is it possible that the dominoes are arranged in a way that Farringdon is unable to move more than 2023 cm
away from the origin?
A quadrant is one quarter of the plane with its boundaries being two perpendicular rays from the origin. An example of
a quadrant is {(x, y) : x, y ≥ 0}.
Solution: Let us consider the graph where the vertices are the corners of the dominoes, and two vertices are
joined by an edge if and only if they are opposite corners of the same domino. This is equivalent to saying that
Farringdon can directly jump from one vertex to the other. We can see that for each grid point of the quadrant,
there are an even number of edges meeting there, except at the origin where there is only one (the figures show
each distinct case). So if the set of vertices Farringdon can reach only consisted of finitely many vertices, then
in this subgraph the sum of the degrees of the vertices would be odd, which is impossible. So the subgraph
reachable by Farringdon cannot be finite, so Farringdon can reach points arbitrarily far from the origin.
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E+3. A round table is surrounded by n ≥ 2 people, each assigned one of the integers 0, 1, . . . , n− 1 such that no two
people received the same number. In each round, everyone adds their number to their right neighbour’s number, and
their new number becomes the remainder of the sum when divided by n. We call an initial configuration of the integers
glorious if everyone’s number remains the same after some finite number of rounds, never changing again.
a) For which integers n ≥ 2 is every initial configuration glorious?
b) For which integers n ≥ 2 is there no glorious initial configuration at all?

Solution: We will show that if n is odd then there is no glorious initial configuration; if n is a power of 2 then
all initial configurations are glorious, and if n is even but not a power of 2 then there exist both glorious and
non-glorious initial configurations.

A configuration is glorious if and only if it reaches the all-0 state, since if one person’s number does not
change, then their right neighbour had to have 0, therefore if no one’s number changes, then it means that
everyone had 0.

Firstly we show that if n is odd, then there is no way of reaching all zeros. Suppose the opposite. Then
before the all zero state let the number of the ith person be ki. We know that ki + ki+1 ≡ 0 (mod n) for
all i (mod n), meaning that ki ≡ −ki+1 (mod n), therefore ki ≡ ki+2 (mod n). Continuing this we get that
ki ≡ ki+2 ≡ . . . ≡ ki+2n−2 (mod n), this includes everyone since 2 is coprime to n. Therefore ki ≡ ki+1 (mod n)
holds as well, but since ki ≡ −ki+1 (mod n), this means that ki+1 ≡ 0 (mod n), therefore all ki are zero.
Therefore before the all zeros state there had to be all zeros as well, therefore this position cannot be reached
from any starting position if n is odd.

Now we show that if n is even but not a power of 2, then there are both glorious and non-glorious configu-
rations. Let the numbers of the n = 2l people be 0, 1,−2, 3,−4, . . . ,−(2l− 2), 2l− 1 in this order. (These are 2l
numbers and are all different modulo n.) Then after the first step the numbers are 1,−1, 1,−1, . . . , 1,−1, mean-
ing that they reach all zeros after the second step. However if the initial configuration is 0, 1, . . . , 2l − 2, 2l − 1,
then it is not glorious: let n = 2ab where a is a positive integer and b > 1 is odd. After the first step the numbers
are 1, 3, 5, . . . , 4l− 5, 4l− 3, 2l− 1, meaning that the difference between neighbours is always 2. This means that
in the next step the difference will be 4 everywhere and after the a steps the difference will be 2a. Since 2a is
coprime to b, this means that after a steps the first b numbers will be different modulo b and the b+1th one will
be the same as the first one modulo b. Moreover modulo b the numbers form 2a cycles, each cycle containing all
remainders. Therefore from here on each cycle will behave as if there were only b people, and since b is odd, the
all zero state can never be reached. Therefore if n is even but not a power of 2, then both types of configurations
exist.

Finally we show that if n is a power of 2, then all configurations are glorious. Let n = 2a and the initial
numbers in order be k1, k2, . . . , k2a . Since in every step everyone adds the right hand neighbour’s number to
theirs, after m steps the ith person will have(

m

0

)
ki +

(
m

1

)
ki+1 +

(
m

2

)
ki+2 + · · ·+

(
m

m

)
ki+m

where the index of k is considered modulo n. Let us observe the case where m = 2a+1 − 1. We know that(
2a+1−1

j

)
is odd for all 0 ≤ j ≤ 2a+1 − 1, therefore after 2a+1 − 1 steps the number of the ith person is(

2a+1 − 1

0

)
ki +

(
2a+1 − 1

1

)
ki+1 + · · ·+

(
2a+1 − 1

2a+1 − 1

)
ki+2a+1−1,

where there are 2a+1 terms, meaning that every kj appears in exactly two of the terms. Since every coefficient
of kj is of the form

(
2a+1−1

j

)
, which is odd, therefore after summing these we get that the coefficient of kj in the

whole sum is even. This means that after 2a+1 − 1 steps everyone will have an even number. After performing
2a+1− 1 more steps, everyone’s number will have another factor of 2, so will be divisible by 4. Therefore we can
reach a state where every number is divisible by 2a, meaning that modulo 2a we reached all zeros, therefore we
have proven that in this case all initial configurations are glorious.
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E+4. In the game of Calculabyrinth two players control an adventurer in an underwater dungeon. The adventurer
starts with h hit points, where h is an integer greater than one. The dungeon consists of several chambers. There are
some passageways in the dungeon, each leading from a chamber to a chamber. These passageways are one-way, and a
passageway may return to its starting chamber. Every chamber can be exited through at least one passageway. There
are 5 types of chambers:

• Entrance: the adventurer starts here, no passageway comes in here;
• Hollow: nothing happens;
• Spike: the adventurer loses a hit point;
• Trap: the adventurer gets shot by an arrow;
• Catacomb: the adventurer loses hit points equal to the total number of times they have been hit by an arrow.

The two players take turns controlling the character, always moving them through one passageway. A player loses if the
adventurer’s hit points fall below zero due to their action (at 0 hit points, the character stays alive). Show an example of
a dungeon map, which consists of at most 20 chambers and contains exactly one Entrance, with the following condition:
the first player has a winning strategy if h is a prime, and the second player has a winning strategy if h is composite.
If the game doesn’t end after a finite number of moves, neither player wins.

Solution: Let us denote the first player with A and the second player with B. The idea is the following: we are
constructing a series of chambers where firstly B can decide how many times the the adventurer gets hit by an
arrow (but at least twice), then again B decides how many catacombs the player goes through (again at least
twice). During this the adventurer loses hit points, which can be any composite number of B’s choice. Finally
we take A into a spike, who loses if the adventurer had 0 lives, otherwise B loses by getting into an infinite
series of spikes.

Now we will detail the more rigorous proof. Consider the map below where E denotes the entrance, T is
a trap, C is a catacomb, S is a spike, and the arrows denote passageways. The shape of the chambers and the
rooms X, Y, Z are only for demonstration purposes.

Firstly observe that A can only visit the square-shaped rooms and B can only visit the circular ones.
Moreover, players only have a choice in rooms X, Y and Z, everywhere else the next step is determined. Now
we are going to consider two cases.

Case 1: h is a prime.
We show that in this case A has a winning strategy. Let the strategy be the following. If we are in room

Y and the adventurer has been hit by more than h arrows, then move down, otherwise move left. This is a
strategy for A, since they do not have a choice in the other rooms. Now let us investigate what B can do. If B
moves right the first h times at X, then the first h− 1 times A moves back to X from Y, and when the player
has been hit by h+ 1 arrows, A moves down and B loses in the catacomb. If after some 0 ≤ c < h moves to Y
B moves downwards, then the player has been hit by c + 1 arrows. Then if the adventurer is still alive, B has
a choice in room Z. Observe that until B only moves down, A cannot lose. Assume that B moved down from
Z k ≥ 0 times, therefore the adventurer lost (c+ 2)(k + 2) hit points. Since we assumed that the player is still
alive and h prime (therefore h − (c + 2)(k + 2) > 0), the adventurer has a positive number of hit points. This
means that after moving left, A will not lose, but then in the infinite series of spikes B will. Therefore we can
conclude that this is a winning strategy for A.

Case 2: h is composite.
Let h = (c+ 2)(k + 2) where c, k ≥ 0. The strategy of B will be as follows. In room X move right the first

c times, then down. In room Z move down the first k times and then to the left. Player A only has a choice in
room Y. According to B’s strategy the player visits room Y at most c times. Therefore if A decides to move
downward from Y, the play will be hit by at most c+ 1 < h arrows, therefore B does not die in the catacomb,
but A will in the infinite series of spikes. If A goes back to X every time, then after the (c + 1)st time in X,
B will move down and A will not have any more choice. After moving down from Z k times, B moves to the
left. At this point the player has been hit by (c+2) arrows and visited (k+2) catacombs, therefore has exactly
h − (c + 2)(k + 2) = 0 hit points remaining. This means that when A enters the spike, they die, proving that
this is indeed a winning strategy for B, and this concludes the proof.
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Note: We believe that any proof will be based on a similar idea, but there are many different such maps,
including ones consisting of fewer chambers. In this proof the aim was to provide a solution that is easy to
follow, not necessarily to include a minimal example. Luckily this is still under the 20 chamber limit.
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E+5. For a given triangle A1A2A3 and a point X inside of it we denote by Xi the intersection of line AiX with the
side opposite to Ai for all 1 ≤ i ≤ 3.
Let P and Q be distinct points inside the triangle. We then say that the two points are isotomic (or we say they form
an isotomic pair) if for all i the points Pi and Qi are symmetric with respect to the midpoint of the side opposite to Ai.

Augustus wants to construct isotomic pairs with his favourite app, GeoZebra. In fact, he already constructed the vertices
and sidelines of a non-isosceles acute triangle when suddenly his computer got infected with a virus. Most tools became
unavailable, only a few are usable, some of which even require a fee:

Name of tool Description Fee (per use)
Point select an arbitrary point (with respect to the position of the

mouse) on the plane or on a figure (circle or line)
free

Intersection intersection points of two figures (where each figure is a circle
or a line)

free

Line line through two points 5 Dürer dollars
Perpendicular perpendicular from a point to an already constructed line 50 Dürer dollars
Circumcircle circle through three points 10 Dürer dollars

a) Agatha selected a point P inside the triangle, which is not the centroid of the triangle. Show that Augustus can
construct a point Q at a cost of at most 1000 Dürer dollars such that P and Q are isotomic.
b) Prove that for all positive integers n Augustus can construct n different isotomic pairs at a cost of at most 200+ 10n
Dürer dollars.
In both parts, partial points may be awarded for constructions exceeding Augustus’s budget. The parts are unrelated, that
is Augustus can’t use his constructions from part a) in part b) .

Solution: In both parts of the problem, D$ represents Dürer dollars. Let the vertices of our triangle be
A1, A2, A3. We will frequently use the notation Xi as mentioned in the problem.
a) We will construct Q straight from the definition. For this, we need the midpoints of two sides of the trian-
gle. We demonstrate a relatively simple but less cost-effective construction (a more economical solution will be
presented in part b) ). Draw a perpendicular from A3 to line A1A2 (50 D$), denote the point of intersection
as H3. Additionally, draw a perpendicular to line A3H3 at A3 (50 D$), then draw perpendiculars from points
A1 and A2 to this new line (2 · 50 D$ = 100 D$); let T1 and T2 denote the resulting intersections. Notice that
due to the right angles, quadrilaterals A1T1A3H3 and A2H3A3T2 are rectangles, so their diagonals bisect each
other. Therefore, if we draw lines T1H3 and T2H3 (2 · 5 D$ = 10 D$), they intersect sides A1A3 and A2A3 at
their midpoints.

It remains to reflect points P1 and P2 in the midpoints. For this, we will use the following construction lemma:
we can reflect a point in another point.
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Construction: Suppose that we wish to reflect point A in point B. Con-
struct the line through B perpendicular to AB, and call it l. Let X ̸= B
be an arbitrary point of line l. Draw a perpendicular to line AX at A,
and let it intersect l at point Y . Finally, let the perpendicular to AX at
X and the perpendicular to AY at Y meet at Z. Drop a perpendicular
from Z to AB, with its foot being C ′. Then in triangle AC ′Z, line l is
parallel to the base C ′Z, and bisects segment AZ, since the diagonals of
a rectangle bisect each other. So l is a midsegment of AC ′Z, therefore B
is the midpoint of AC ′. So the requested point is C ′ = C.

A

X

Zl

Y

B C ′ = C

We can check that since we already had line AB constructed (as a sideline of ABC), the construction above
costs us 5·50 D$+5 D$ = 255 D$. To summarize: we take point P , construct points P1 and P2 (2·5 D$ = 10 D$),
then we reflect them in the midpoints of the corresponding segments (2 ·255 D$ = 510 D$), hence getting points
Q1 and Q2. The intersection of lines A1Q1 and A2Q2 is Q (2 · 5 D$ = 10 D$). We prove that Q and P form an
isotomic pair indeed. Clearly, by the method of construction of Q, it suffices to show that points P3 and Q3 are
symmetrical with respect to the midpoint of side A1A2. Write down Ceva’s theorem for points P and Q:

A1P3

P3A2
· A2P1

P1A3
· A3P2

P2A1
= 1 =

A1Q3

Q3A2
· A2Q1

Q1A3
· A3Q2

Q2A1
.

Since A2P1 = Q1A3, P1A3 = A2Q1, A3P2 = Q2A1, P2A1 = A3Q2, we see that A1P3

P3A2
= Q3A2

A1Q3
. However, as a

point X moves along side A1A2, the ratio A1X
XA2

takes every positive real number precisely once, so the previous
equality can only hold if A1P3 = Q3A2 and P3A2 = A1Q3, that is, if points P3, Q3 are indeed symmetrical in
the midpoint.

Altogether we spent 50 + 50 + 100 + 10 + 10 + 510 + 10 = 740 D$, so we have nicely remained within our
budget. It is easy to see that P ̸= Q, otherwise P would be the centroid.

b) The task consists of two parts: first we show that we can construct one isotomic pair for 210 D$, and
then we show that from here we can always construct new pairs for 10 D$ each.

As the centroid cannot be used because of the definition, we need to find another isotomic pair. We can recall
that the touchpoints of the incircle and excircles lie symmetrically on each side. From Ceva’s theorem, it is also
clear that if we connect each vertex with the opposite touchpoint of the incircle, we get three concurrent lines
(since if we write down the subdivision ratios on each side, each of three tangent lengths from A,B,C to the
incircle will appear once as a numerator and once as a denominator). We can make the same observation about
the touchpoints of the excircles on each side. The two common intersection points are called the Gergonne and
Nagel points of the triangle. These are what we will construct. (Since the triangle is not equilateral, the two
points differ.)

Drop a perpendicular from A2 to line A1A3 (50 D$), let its foot be H2. Then construct circle (A2A3H2)
(10 D$). Since this will be the circle with diameter A2A3, the intersection of the circle and A1A2 will be the
foot of the altitude belonging to A3. If we also draw the line A3H3 (5 D$), we will get the orthocentre H too.
Now draw circles (A1A2A3), (A3HH2), and (A2HH3) too (3 · 10 D$ = 30 D$). Denote the new intersection
points by (A1A2A3) ∩ (A3HH2) = K3 and (A1A2A3) ∩ (A2HH3) = K2. Draw line K2H (5 D$), let it inter-
sect side A1A3 at F2 and let its second intersection with the circumcircle be A′

2. Then A′
2K2A2∠ = 90◦, so

A2A
′
2 is a diameter of the circumcircle. Furthermore, A1HA3A

′
2 is a parallelogram, since A1H,A′

2A3 ⊥ A2A3

és A1A
′
2, HA3 ⊥ A1A2. Since the diagonals of a paralellogram bisect each other, F2 will be the midpoint of

side A1A3. Similarly draw line K3H (5 D$), intersecting line A1A2 at its midpoint F3, and having a second
intersection A′

3 (opposite to A3) with the circumcircle. So by constructing lines A2A
′
2 and A3A

′
3, we also get

the circumcentre O (2 · 5 D$ = 10 D$).
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Construct the perpendicular bisectors OF2 and OF3 (2 · 5 D$ = 10 D$). These intersect the circumcircle at the
midpoints of arcs belonging to the sides A1A3 and A1A2. Let these be denoted by M2, N2,M3, N3. So if we
draw the lines A2M2, A2N2, A3M3, A3N3, that is, the internal and external angle bisectors (4 · 5 D$ = 20 D$)
we will have constructed the incentre and the excentres. Denote these by I, J1, J2, J3. Let line A′

2I intersect the
circumcircle for the second time at I ′ (5 D$). Then circle (A2II

′) will be the circle with diameter A2I (since
90◦ = A2I

′A′
2∠ = A2I

′I∠), so it intersects sides A2A1, A2A3 at the touchpoints of the incircle (10 D$). If we
connect these with the opposing vertices, we get the Gergonne point (2 · 5 D$ = 10 D$). We proceed similarly
for the excircles. Let line A′

3J2 intersect the excircle at J ′
2 (5 D$), then draw circle (A3J2J

′
2) (10 D$), which

will actually be the circle of diameter A3J2, so it intersects side A1A3 at the projection of point J2, that is, the
touchpoint of the excircle for the second time. We can do the same for J3 (5 D$ + 10 D$ = 15 D$), and if we
connect the two touchpoints with the opposing vertices, we get the Nagel point (2 · 5 D$ = 10 D$).

Our total expense was 50 + 5 + 30 + 5 + 5 + 10 + 10 + 20 + 5 + 10 + 10 + 5 + 10 + 15 + 10 = 200 D$, so 10 D$
remains. From half of the remaining 10 D$, we buy an antivirus software, and the other half will be used later.

Now we will elaborate on how we can find a further isotomic pair. Take an arbitrary point G′ on the part
of line A3G which is inside the triangle. Let line NG′ meet the extended side A1A2 at point T , and let line TG
meet line A3N at N ′ (2 · 5 D$ = 10 D$). We will prove that G′ and N ′ are isotomic too.
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For symmetry reasons, it suffices to prove that G′
1 and N ′

1 are symmetric with respect to the midpoint of side
A2A3. Observe that (A2, A3;G1, G

′
1)

A1= (G3, A3;G,G′)
T
= (N3, A3;N

′;N)
A1= (A2, A3;N

′
1, N1) = (A3, A2;N1, N

′
1).

If the reflection of G′
1 to the midpoint of side A2A3 is denoted by G∗

1, then as reflection in a point preserves
cross-ratios, (A2, A3;G1, G

′
1) = (A3, A2;N1, G

∗
1). So (A3, A2;N1, N

′
1) = (A3, A2;N1, G

∗
1), therefore N ′

1 = G∗
1,

which is what we needed to prove. However we have to be careful as T needs to exist. We can ensure this by
choosing T to lie inside the segment A1A2. The only problem can happen if we choose the intersection point
GN ∩A1A2 exactly, but this can be avoided by constructing line GN (5 D$).
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