
E1. In a forensic laboratory, we have a twin-pan balance and eight weights labelled with their masses, weighing
1, 2, . . . , 8 kg. During an investigation, a piece of gold was found with a mass equal to one of the known weights. In
one weighing, a twin-pan balance is used to compare the piece of gold to one of the eight weights. The cost of such a
measurement is equal to the weight of the weight used, measured in Dürer dollars. What is the minimum number of
Dürer dollars required to determine the mass of the piece of gold with certainty?
For example, if the piece of gold is compared to the weight of 2 kg, the cost of this measurement is 2 Dürer dollars. The
measurements may depend on the results of previous measurements.

Solution: 12 is the minimum. Our first step is to compare the piece of gold with 5 kg. If the mass of the gold
is greater than this, we can determine its value by comparing it to the weight of 7 kg. If it is less than 5 kg, we
can determine its value by comparing it to the weight of 3 kg and then to the weight of 1 kg. This will cost up
to 12 in total.

We prove that it cannot be cheaper. If we compare the gold block with 6 kg in the first measurement and
it turns out that the block is heavier, we still have to compare it with either the 7 kg or the 8 kg block to
determine the weight, but this will cost at least 13. If we start with a weight of at least 7 kg and get the answer
that the gold is lighter, then if the gold is 5 or 6 kg, we have to compare it with one of the two to decide which
it is, again costing at least 12. On the other hand, if the first measurement is to compare it with a weight of at
most 4 kg, then to distinguish between the two cases of gold being 5 kg or 6 kg and the two cases of the gold
being 7 kg or 8 kg, you need to compare the weight with one of the pairs of numbers, so you need at least two
measurements totalling at least 5 + 7, for a total of at least 1 + 5 + 7 = 13. This completes the proof.
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E2. Let k be a circle with centre O, and let P be a point outside the circle. The lines e and f pass through P and are
tangent to k, touching the circle at points E and F , respectively. Let A be an interior point of segment PE. The two
lines through A that are tangent to circle k are e and g. Denote the intersection of lines f and g by B. Suppose that
∠EPF is an acute angle and ∠PBA = ∠APB. Prove that the midpoints of segments PB and AF are collinear with O.

Solution: Let M denote the midpoint of segment PB. From
the condition of the problem, triangle ABP is isosceles. It fol-
lows that in this triangle the median AM is also an altitude
and an internal angle bisector. Line PF is tangent to circle
k, so OF ⊥ PF . Further, M lies on line PF , so OF ⊥ MF .
Also, notice that the line AO bisects ∠EAB, as lines AE,AB
are tangent to the circle k. Thus, AO is the external bisector
of ∠PAB, which is known to be perpendicular to the internal
angle bisector AM . From the above, in quadrilateral AMFO
the angles at vertices A, M and F are all right angles, imply-
ing that it is a rectangle. Since the diagonals of a rectangle
bisect each other, the midpoint of segment AF coincides with
the midpoint of segment OM . The statement follows.
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E3. The infinite sequences a1, a2, . . . and b1, b2, . . . consist of positive integers, and the following conditions hold for all
i ≥ 1:

• if gcd(ai, bi) > 1 then ai+1 =
ai

gcd(ai, bi)
and bi+1 =

bi
gcd(ai, bi)

,

• and if gcd(ai, bi) = 1 then ai+1 = ai + 1 and bi+1 = bi + 2.
Determine all pairs of positive integers (a1, b1) for which there exists a pair in the infinite sequence (a1, b1), (a2, b2), . . .
that appears infinitely many times.
Here, gcd(p, q) denotes the greatest common divisor of p and q.

Solution: Let b1 = 2a1 + c1, where c1 is an integer. Furthermore, for each i, write the elements of the sequence
bi in the form bi = 2ai + ci in a similar way. For some j, if aj and bj are relative primes, then the rules are
aj+1 = aj +1 and bj+1 = bj +2. If bj = 2aj + cj , then bj+1 = bj +2 = 2aj + cj +2 = 2(aj +1)+ cj = 2aj+1+ cj .
So at these steps cj+1 = cj . And for some k, if gcd(ak, bk) > 1, then the next members of the series are obtained
by dividing by their greatest common divisor. Then, for bk = 2ak + ck, ak+1 = ak

gcd(ak,bk)
and bk+1 = bk

gcd(ak,bk)
,

so that bk+1 = 2ak+ck
gcd(ak,bk)

= 2ak+1 + ck
gcd(ak,bk)

, i. e. ck+1 = ck
gcd(ak,bk)

. Since gcd(ak, bk) > 1, after this step
0 < |ck+1| < |ck| (unless ck = 0, in which case ck+1 = 0), but we know that ck+1 is still an integer, since bk+1

and 2ak+1 are both integers
If c1 is nonzero, then we can only divide it by integers greater than 1 a finite number of times, otherwise

the ci series would become non-integer after a while. Then there is a final division, i.e. a final step before which
gcd(ai, bi) > 1 is satisfied. After that there is always gcd(ai, bi) = 1, i.e. from now on the sequences continue
according to the rules ai+1 = ai + 1 and bi+1 = bi + 2. In this case, there can be no pair of numbers that
occur infinitely often, since both sequences grow strictly monotonically after a finite length. And if c1 = 0, then
b1 = 2a1, i.e. either a1 = 1 and b1 = 2, or a2 = 1 and b2 = 2. From then on, the pairs (1, 2) and (2, 4) will follow
each other in a cyclic sequence, i.e. they will occur an infinite number of times in the sequence. So, if and only
if b1 = 2a1, there will be a pair of numbers that occur an infinite number of times.

Second solution: Consider a coordinate system and let the x axis denote the values of the ai series and the y
axis denote the values of the bi series. For each integer i in the coordinate system, denote the point (ai, bi). Since
the elements of the series are positive integers, all the points marked are in the first quadrant of the plane. Let
us examine the distance of the marked points from the line y = 2x. If, for some k, gcd(ak, bk) > 1, then there
is still a grid point on the segment between the origin and the point (ak, bk), so in the next step we will get the
closest of these grid points to the origin, since then (ak+1, bk+1) =

(
ak

gcd(ak,bk)
, bk

gcd(ak,bk)

)
. If the point (ak, bk)

falls on the line y = 2x, then so does (ak+1, bk+1), but if it does not, then it will not fall on the line y = 2x
either, but we are strictly closer to it (the distance is at least halved). And if for some j we have gcd(aj , bj) = 1,
then (aj+1, bj+1) = (aj + 1, bj + 2), so we get the next point (aj , bj) by adding the vector (1, 2). This vector is
parallel to the line y = 2x, so the distance from the line does not change during this process (if it was 0 before,
it remains 0 now).

So if the first point is not on the line y = 2x, there won’t be any points on that line. Since the line y = 2x
has a rational slope, there is a grid point closest to it. So our distance from the line can only decrease a finite
number of times (since each decrease at least halves it), i.e. after a while we can only walk parallel to this line.
In this case, there will be no point that is touched an infinite number of times. If, on the other hand, the first
point falls on the line y = 2x, then, as in the previous solution, from the second pair of numbers (1, 2) and (2, 4)
will be repeated alternately, i.e. there will be a pair of numbers in the sequence that is touched infinitely. Again
we see that if and only if b1 = 2a1 there will be a pair of numbers that occur infinitely often.

Note: If we replace 1 and 2 by arbitrary integers c, d, the statement remains true, i.e. there will be a pair
of numbers that occur infinitely often if and only if b1 = d

ca1.
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E4. A positive integer n and a real number c > 1 are given. The underground Albrecht Bank has just been robbed, and
the n robbers are fleeing the scene. Before the heist, each criminal hid a scooter at a different point on the surface. The
robbers have now emerged at various exits onto the surface. We can observe that if the robbers’ positions were scaled by
a factor of c from the main surface entrance of the bank, each would be precisely at their own scooter.

The robbers wish to escape using the scooters (not necessarily their own), but each scooter can only carry one person.
The police are on their way, so each robber must run to their chosen scooter on the shortest path possible. Prove that
the total distance travelled by the robbers to reach the scooters cannot be less than if they all choose their own scooter.
The main entrance of the bank, the robbers, and the scooters are considered as points, and the terrain is completely flat.

Solution: Let us denote the robbers’ positions by A and the scooters’ positions by B. The task is to minimize
the sum of distances in a perfect matching between A and B, where a perfect matching means that each point
in A is paired with exactly one point from B and any two different points from A have different pairs in B.

Instead of perfect matchings between A and B, we will refer to the corresponding bijections A → B
throughout the proof. We denote the distance of a bijection π between two sets by c(π). Let πid denote the
bijection A → B taking each point to its scaled image.

Case 1. Suppose that c is so large that we can draw a circle centered at the origin such that A is completely
inside and B is completely outside. Let f be a function on all points, defined as the distance of the given point
and the circle. For any u ∈ A, v ∈ B, d(u, v) ≥ f(u) + f(v). This is because if we draw the segment uv, then it
has to intersect the circle, and the distance it travels inside is at least f(u), and the distance it travels outside
is at least f(v). So for any bijection π:∑

a∈A

d(a, π(a)) ≥
∑
a∈A

(f(a) + f(π(a))) =
∑

x∈A∪B

f(x)

It is easy to see that equality is reached if every point in A is matched to its image.
Case 2. If c is not large enough. We prove the statement by contradiction: suppose there exists a cheaper

bijection π : A → B. Let C be a sufficiently large scaling of A, so that there exists a circle centered at the origin
with all points of A and B inside, and all points of C outside. Let ρid : B → C and σid : A → C assign to each
point its scaled image, then ρid ◦π : A → C is a bijection with smaller total cost than σid : A → C, since by the
triangle inequality,

c(ρid ◦ π) =
∑
a∈A

d(a, ρid(π(a))) ≤

≤
∑
a∈A

(d(a, π(a)) + d(π(a), ρid(π(a)))) = c(π) + c(ρid) < c(πid) + c(ρid) = c(σid).

But this contradicts the minimality of σid from Case 1.

Second solution: We reduce the problem to the case where each point lies on a single ray [0,∞). For each point
P , let d0(P ) denote its distance from the origin O. For a bijection π : A → B, let c′(π) =

∑
a∈A |d0(π(a))−d0(a)|.

Claim. For every pair of points x, y, we have d(x, y) ≥ |d0(x)− d0(y)|.
Proof of claim. Suppose that d0(x) ≥ d0(y) without loss of generality. Then the statement is equivalent to
d(O, x)− d(O, y) ≤ d(x, y), which is true by the triangle inequality.

Let A′ = {d0(a) : a ∈ A} and B′ = {d0(b) : b ∈ B}. Then c′(π) corresponds to the cost c of the
bijection corresponding to π between A′ and B′. Listing the points of these two sets as 0 ≤ a1 ≤ ... ≤ an and
0 ≤ b1 ≤ ... ≤ bn, the bijection taking each point to its scaled image corresponds to a1 7→ b1, ..., an 7→ bn. We
will show that this bijection is optimal for this one-dimensional version of the problem. Then this means that
πι is optimal for the original problem, because for any π : A → B, c(π) ≥ c′(π) ≥ c′(πι) by summing over all
a ∈ A and using the Claim.

Now if all points lie on the ray [0,∞), then the statement of the problem is easy to establish: supposing
there are points a < a′ whose matched pairs are b and b′ respectively, then we must have b ≤ b′. Supposing
otherwise, if b > b′ then d(a, b)+d(a′, b′) could be reduced by swapping the two pairs. So the order of the points
is indeed the same as the order of their pairs in the matching.
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E5. We call a pair of positive integers (a, b) criminal, if they have the same number of digits in base-10, and we can
obtain the difference of their squares by writing one of them after the other one.
a) Find all criminal pairs of positive integers, for which a divides b.
b) Does there exist a criminal pair of positive integers, where a and b are coprime?

Solution:
a) Let the number of digits in a and b be k, without loss of generality suppose that b ≥ a. Then k ≥ 1 and

10k−1 ≤ a, b ≤ 10k. If we write b after a then we get 10k · a+ b and if a after b we get 10k · b+ a.
Observe that b2 − a2 < b2 < 10k · b < 10k · b + a, so it’s not possible that b2 − a2 = 10k · b + a (even if we

neglect a|b).
So we only need to consider the case b2 − a2 = 10k · a + b. Since a|b, there exists some positive integer ℓ,

such that ℓ ·a = b. Since a and b have the same number of digits, we have 1 ≤ ℓ ≤ 9. Substitute ℓ ·a for b to get:

(ℓa)2 − a2 = a · (10k + ℓ)

Rearranging:
a2 · (ℓ2 − 1) = a · (10k + ℓ)

So
a · (ℓ2 − 1) = 10k + ℓ

We distinguish the following cases

• If ℓ is odd, then the left hand side is even (since ℓ2 − 1 is even), while the right hand side is odd (the sum
of an even and odd term), a contradiction. Suppose for the next cases that ℓ is even (so 2, 4, 6, or 8).

• If ℓ = 2, then a = 10k+2
22−1 = 333...334 and b = 2a = 666...668 (where each number contains k − 1 copies of

3, and 6 respectively). The pairs of this form satisfy the conditions.

• If ℓ > 2 and k > 1, then the left hand side is at least 15a (since 42 − 1 = 15), and since a ≥ 10k−1 the
left hand side is at least 15 · 10k−1 = 10k + 5 · 10k−1. The right hand side is at most 10k + 9 (as ℓ ≤ 9).
Furthermore as k > 1,we get 10k + 5 · 10k−1 ≥ 10k + 5 · 101 > 10k + 9 ≥ 10k + ℓ, contradiction again.

• If ℓ > 4 and k = 1, the right hand side is at most 20, but the left hand side is at least 62 − 1 = 35, so no
solution.

• For ℓ = 4 and k = 1 none of (a, b) = (1, 4) or (a, b) = (2, 8) work, so no such pair exists.

So the only pairs that work are a = 333...334, b = 666...668, where a and b have the same numbers of digits.

b) Suppose that a and b are coprime and (a, b) is criminal. We get again b2−a2 = 10k ·a+ b, so rearranging
gives: b(b − 1) = a(10k + a). Since a and b are coprimes, a | b − 1, let b = a · ℓ + 1. Since both a and b have k
digits, 1 ≤ ℓ ≤ 9. Substituting b = a · ℓ+ 1 to the equation and rearranging similar to a) we get:

a · (ℓ2 − 1) = 10k − ℓ

Again, we distinguish a few cases:

• For ℓ odd, similarly to a) we get no solution, by parity reasoning.

• For ℓ = 2 we get no solution, as 3 ∤ 10k − 2.

• For ℓ > 3 similarly to a) , the left hand side is at least 15a ≥ 15 · 10k−1 > 10k > 10k − ℓ, contradicting
the assumptions.

So there are no coprime criminal pair of integers.
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