
E+1. In triangle ABC, we have ∠CAB = ∠CBA = 72◦. Point D lies on side AC such that DA = AB. We draw
tangents from C to the circumcircle of triangle ABD, let the points of tangency be E and F . Prove that the midpoint
of segment EF is also the circumcentre of triangle ABC.
First solution: Let G be the point on segment BC such that BG = AB. Furthermore, let K be the center of the circle
passing through points A,B,D,G,E, F . Finally, let O be the intersection of the circles (AKD) and (BKG) different
from K.

First, we prove that O is the circumcenter of triangle ABC. On one hand, by symmetry, O lies on the bisector of
∠ACB, so ∠OCB = 18◦. On the other hand, we want to compute the angle ∠OBC:

∠OBC = ∠OBG = ∠OKG =
∠DKG

2
= ∠DBG = ∠ABC − ∠ABD = 72◦ − 54◦ = 18◦,

since ∠BAD = 72◦ and AB = AD, we obtain ∠ABD = 54◦. Thus, ∠OCB = ∠OBC, which implies that OC = OB. By
symmetry, OB = OA, so O is indeed the circumcenter of triangle ABC.

Next, we prove that O is the midpoint of segment EF . By symmetry, we know that the points C,O,K are collinear.
Then, the power of point C with respect to the circle ABDGEF is:

CF 2 = CG · CB.

Further, the power of point C with respect to the circle BGOK is:

CG · CB = CO · CK.

From this, we obtain CF 2 = CO · CK, which implies that ∠COF = ∠CFK = 90◦. By symmetry, we also know that
FO = EO, and since ∠EOF = 180◦, it follows that O is the midpoint of segment EF . This concludes the proof.

Second solution: Let us define O as the center of the circumcircle (ABC). Again, we observe that O ∈ BD, since by
simple angle calculations we have

∠OBA =
180◦ − ∠AOB

2
=

180◦ − 2∠BAC

2
= 54◦ =

180◦ − ∠BAD

2
= ∠DBA.

We need to prove that C and O are inverses with respect to the circle (ABD). We invert the figure with respect to the
circle (ABC). Under this inversion, the points A,B,C remain fixed, while O goes to infinity. After the inversion, the
statement to be proven is that the images of C and O are inverses with respect to the image of the circle (ABD), that
is, C is the center of the circle (ABD∗), where D∗ denotes the inverse of D with respect to (ABC).

Since CA = CB, it suffices to show that CD∗ = CB. By inversion, we have

∠BD∗C = ∠OD∗C = ∠OCD = 18◦ = 72◦ − 54◦ = ∠DBC = ∠D∗BC.

Thus, the triangle BCD∗ is indeed isosceles, which completes the proof.
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E+2. Geronimo has thought of a polynomial P with integer coefficients. Thea wants to determine this polynomial. To
do so, every minute she can say a rational number q, and Geronimo immediately tells her the value of P (q).
a) Is there a polynomial P for which there exists a finite sequence of questions that Thea can ask, from which she can
determine P?
b) Geronimo told Thea that the leading coefficient of P is 1. Prove that for every such P , there exists a finite sequence
of questions that Thea can ask, from which she can determine P . Determine, as a function of P , the minimum number
of such questions Thea needs to ask!
Thea determines the polynomial P if P is the only polynomial with integer coefficients that fits the information she has.
Solution: a) There is no such polynomial. Suppose that Thea can determine P based on the answers to some finite
number of questions q1 = a1/b1, q2 = a2/b2, . . . , qN = aN/bN . We can see that polynomial P ∗(x) = P (x) + (b1x − a1) ·
. . . · (bNx − aN ) is different from P but takes the same values at points q1, q2, . . . , qN , which contracticts the fact that
Thea could determine P .

b) We will show that Thea needs at least n questions where n is the degree of P .
Firstly we prove that n − 1 questions are not enough. Suppose that Thea can determine P based on the answers

to questions q1 = a1/b1, q2 = a2/b2, . . . , qn−1 = an−1/bn−1. Now similarly to the first part, the polynomial P ∗(x) =
P (x) + (b1x− a1) · . . . · (bn−1x− an−1) is different to P but takes the same values at the asked points. We know P is of
degree n and its leading coefficient is 1 and since the additional term is of degree at most n− 1, therefore P ∗ is also of
degree n and has 1 as its leading coefficient.

Now we will show that Thea can always determine P in n questions. Let the first question be q1 = 1/2 and the
answer to it a1/b1 · 2k, where k ∈ Z and both a1, b1 are odd positive integers. We claim that this means that the degree
of P is −k. This is because if R(x) = xm + rm−1x

m−1 · · ·+ r1x+ r0, where ri are integers, then R(1/2) · 2m is an integer,
but R(1/2) ·2m−1 is not. This means that after the first question Thea knows n, the degree of P . Let the other questions
be on values qi = 1/(i+1), where 2 ≤ i ≤ n. Then the polynomial P (x)−xn is of degree at most n− 1, and Thea knows
its value in n points, therefore by using Lagrange-interpolation Thea can determine the polynomial P (x)− xn, therefore
also P .

2/7



E+3. a) Is it true that for every positive integer N there exist N lines in the plane in general position such that every
intersection point determined by these lines is at an integer distance from every line?
b) Do there exist infinitely many lines in the plane in general position with this property?
A set of lines is in general position if no two are parallel, and no three pass through the same point.
Solution: a) We show that there exist N such lines for any arbitrarily large positive integer N . We define our lines in
the form aix+ biy + ci = 0, where the values of ai, bi, ci will be chosen later. Observe that the intersection point of the
lines aix+ biy + ci = 0 and ajx+ bjy + cj = 0 is given by(

cibj − bicj
biaj − aibj

,
ciaj − aicj
biaj − aibj

)
,

where biaj − aibj ̸= 0, since no two of our lines are parallel. Consequently, if we choose all ai, bi and ci to be rational,
the intersection points of any two lines will have rational coordinates.

Now, we use the fact that the distance of a point (x0, y0) from the line ax+by+c = 0 is given by
|ax0 + by0 + c|√

a2 + b2
. We

choose the triples (ai, bi,
√

a2
i + b2i ) to be primitive Pythagorean triples. This ensures that any rational-coordinate point

will be at a rational distance from all N lines (provided that c is also rational). Furthermore, the slopes ai/bi of the lines
will be distinct due to the primitiveness, meaning that no two of our lines are parallel. Now, we need to ensure that no
three lines pass through a single point. Fortunately, this can be easily arranged since we have only finitely many lines,
and we can freely choose the constants ci as any rational numbers. Finally, since we have only finitely many distances,
we can scale the configuration by the least common multiple of the denominators of these distances, making all distances
integer-valued.

b) We prove that infinitely many such lines cannot exist. We will prove by contradiction, assume that there are
infinitely many lines, let one of them be line e and let A and B be intersection points on e. Now let f be a line in
the construction different from e. Let f ′ be the line parallel to f passing through A. Now the circle with centre B and
tangent to f ′ has an integer radius (it is the difference of the distance of B and A from f , which are both integers) and
this radius is less than |AB|. This means that there are only finitely many such possible circles, but each such circle
corresponds to two directions of lines, meaning that in total there can be only finitely many directions of lines, which is
contradicting the fact that the lines are in general position.
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E+4. Let S be a finite nonempty subset of the positive integers, and let G be a connected tree graph on n vertices. For
any vertices u and v, let d(u, v) denote the graph-theoretical distance between the two vertices, that is, the number of edges
of the unique path connecting u and v. A sequence v1, v2, . . . , vn, vn+1 of vertices of G is called an exploration if v1 = vn+1,
the vertices v1, v2, . . . , vn are all distinct, and for every 1 ≤ i ≤ n, the distance d(vi, vi+1) is in S. An exploration is
successful if each number s ∈ S appears the same number of times in the list d(v1, v2), d(v2, v3), . . . , d(vn, vn+1). For
which sets S does there exist a finite connected tree G with at least 2 vertices, which can be explored successfully?
Solution: We will show that there exists a suitable graph G if and only if there is an odd element is S.

The condition is necessary: If S contains only even numbers then let’s colour the tree graph with two colours,
black and white, such that neighbouring vertices are of different colours. If the first vertex in the exploration is white,
then we can never reach the black ones with only even jumps, therefore the whole graph cannot be explored.

Constructing G: Now we can assume that S contains an odd element.

First if a > 1, b ≥ 1 are two different elements of S and a + b − 2 /∈ S \ {a, b}, furthermore there is a successfully
explorable graph G′ for set S′ = S \ {a, b} ∪ {a + b − 2}, then there is one for S as well. Let v1, v2, . . . , v|G′|, v1 be a
successful exploration in G′. We know that |S′| · k = |G′|, where is k is the number of times we used one of the elements
of S. Now for every step of size a+ b−2 let us make the following modification: if we are stepping from u ∈ G′ to v ∈ G′,
let the shortest path between them (of length a+ b− 2) be the vertices u,w1, w2, . . . , wa+b−3, wa+b−2 = v. Then we will
add a leaf w̄ to vertex wa−1, and modify the exploration by stepping from u to w̄, and from w̄ to v. Since the lengths of
the shortest paths between these vertices are a and b respectively, therefore we created one step of length a and one of
length b instead of one of length a+ b− 2.

This modification will result in a new tree graph as we only added leaves. Now by induction on |S|, if |S| ≥ 3, and
S contains an odd element, then let a be the largest odd element and let b be an arbitrary even element is S. The set
S′ = S \ {a, b}∪ {a+ b− 2} has fewer elements than S and contains an odd element, therefore we are done. If S contains
only odd elements, then let a and b two of them, then performing the same operation the resulting set S′ still contains
at least one odd element.
If |S| = 2 and there is an even element in S, then after forming S′ we are done, therefore we now only need to consider
the cases where S consists of one or two odd numbers.

If |S| = 1, firstly we show a construction for S = {3}:

1 2
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202122

It is clear that for by continuing the red and blue pattern we can achieve for any l that for every vertex there is another
vertex at a distance at least l + 1. From here on let l(G) denote the smallest such number for G.

Using induction suppose that for some odd k we have found a suitable graph G for S = {k} and l(G) ≥ k + 1, we
will show that for S = {k + 2} there exists a suitable G′. In G add a leaf to the starting vertex of G, let this be the
starting vertex in G′. Now we go through the vertices of G as follows: if we want to reach a new leaf attached to a vertex
x ∈ V (G) and we are currently in a new leaf attached to y ∈ V (G), then consider a series of vertices y, v1, v2, . . . , x of
G which is in the original successful exploration, put a new leaf at each of these vertices and go through these leaves in
order. Since for every vertex x in G there is a vertex at distance of k + 1 (since l(G) ≥ k + 1), we first need to reach a
new leaf at this vertex and then step to x. Afterwards we perform this for every vertex we need to reach a new leaf which
if of distance k+2 of the starting vertex. We have only added leaves to G therefore G′ is still a tree graph and l(G′) ≥ l(G).
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Therefore in order to obtain a graph for S = {k}, we need to start from a graph G that is suitable for S = {3}
and for which l(G) ≥ k + 1. After performing the steps from the previous paragraph we obtain a suitable graph for
S = {k}.

Since for S = {1} a tree with two vertices is sufficient, we have shown that the all of the one-element sets S work.

Finally we need to consider the case where S = {p, q} and p < q are both odd. If p > 1, consider a graph G for
S = {q}. Since q is odd and a tree graph is always bipartite, G has to have an even number of vertices (since an explo-
ration alternates between the partitions), meaning that there are an even number of q-steps in the successful exploration.
Now instead of step vi → vj with shortest path vi, a1, a2, . . . , aq−1, vj we can add a leaf x to vertex ap−1 and add a leaf
y to a1, and perform the steps vi → x → y → vj . With this we have increased the number of p-steps by 2, repeating this
a few times we can achieve that there are the same number of p and q-steps.

If S = {1, 2k + 1} then let the graph be:

1 2 3 . . . 2k 2k + 1 2k + 2

2k + 3 2k + 5 . . . 4k + 1 2k + 4 2k + 6 . . . 4k + 2

With this we have provided a construction for all cases.
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E+5. A positive integer k is called criminal if there exist distinct positive integers m and n so that the number k has
two digits in both its base m and its base n representation, and the two representations have the same two digits, but
in reverse order. Prove that there exists a positive integer K so that every integer k ≥ K is criminal.
For positive integers b, k, the base b representation of k is the ordered tuple (bd, bd−1, . . . , b1, b0) of integers which satisfies
0 ≤ bi < b for all i < d, and 0 < bd < b, and furthermore k = bd ·bd+bd−1 ·bd−1+ . . .+b1 ·b+b0. Then (bd, bd−1, . . . , b1, b0)
are the digits, and the number of digits is d+1. For example, the representation of 7 is (2, 1) in base 3, and (1, 2) in base
5, therefore 7 is criminal.
Solution:

Let k ≥ 2 be a non-criminal integer. We claim that if d is a positive integer with d5 < k, then d | k.
Proof: Fix the value of k, and the proof proceeds by induction on d, d = 1 is trivial. Let d5 < k and suppose for all

d′ < d we have d′ | k, and d ∤ k. Let r be the remainder of k when divided by d, so 1 ≤ r ≤ d−1. Let ℓ = LCM(d, r) < d2.
Since d | k− r and r | k− r, we have ℓ | k− r and r | k− ℓ. If we take m = k−r

ℓ
and n = k−ℓ

r
, then k = m · ℓ+ r = n · r+ ℓ.

These are the base m and n representations of k, provided that the following 4 inequalities hold:

ℓ < m, r < m, ℓ < n and r < n.

We already know that ℓ ≥ d > r, and m < n, since this is equivalent to the statement (k − r)r < (k − ℓ)ℓ, which
follows form the fact that x 7→ (k − x)x is a strictly increasing function up to x < k/2, and r < ℓ < d2 < k2/5 ≤ k/2, if
k ≥ 2. So if ℓ < m, all 4 inequalities hold, and k is criminal. We know that

k > d5 ≥ d4 + d ≥ ℓ2 + r

so, m = k−r
ℓ

> ℓ, contradiction.
Hence, we are only left to prove that there exists some K positive integer such that for all k ≥ K there exists some

d < k1/5 with d ∤ k. Let K be the product of the first 10 primes, suppose that there exists some k ≥ K not satisfying
the above. Then all of the first 10 primes divide k, so let the exponent of p in k be ep ≥ 1. Then k ≥

∏10
i=1 p

epi
i , so there

exists some p ∈ {p1, . . . , p10}, such that pep < k1/10. But then d = p2ep < k1/5, with d ∤ k, contradiction. Hence the
statement of the problem holds with K =

∏10
i=1 pi = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 = 6469693230.

Note: A list of all non-criminal integers:

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 18, 20, 24, 32, 48, 60, 72, 168, 720.
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E+6. Game: Initially, an ordered pair of positive integers (n, k) is written on a sheet of paper. Two players are playing
a game, taking turns alternately. In each turn, if the pair (a, b) is on the sheet and is not crossed out, then the player
must cross out (a, b) and instead write (a, b+ 1) or (a− b, b) on the sheet. The winner is the first player to write a pair
in which at least one of the numbers is not positive.
Defeat the organisers twice in a row in this game! First, the organisers determine the value of n and k, then you get to
choose whether you want to play as the first or the second player.
Solution: Let us call a position a winning position, if starting from there the second player has a winning strategy,
otherwise call it a losing one. We will determine for all positions (a, b) if they are winning or losing.

Clearly it is a losing position if a ≤ b. If a ≤ 2b, then if someone subtracts from a, they lose, if both of them increase
b, then the person reaching a = b will lose. Therefore in this case the winning positions are when a− b is odd.

Now we will show that if a > 2b, then a even, b odd is a winning position, and it is a losing position if they have the
same parity. We can reach a winning position starting from (even, even) by always increasing b. From (odd, odd) we can
always move to (even, odd) by using a− b. Note that these lead to winning positions even when a ≤ b. Finally we need
to prove that the positions (odd, even) are winning, meaning we can only move to losing positions from them, which is
clear, as one of the steps leads to (odd, odd), the other one to (even, even).

At last we have the case where a > 2b and a is even, b is odd. Then by increasing b we get to a losing position. If
both players decrease a, the winning player is whoever brings a below 2b first, therefore here the winning positions are
when ⌊a

b
⌋ is odd.

7/7


