
1. feladat
Legyen a test sebessége v, amikor éppen elhagyja a körívet. A kezdeti energia megegyezik

eddig a pontig a kinetikus energia és a potenciális energia megváltozásának összegével:
1
2mv2

0 = 1
2mv2 + mgR(1 + cos α). (1.1)

Innen a sebesség négyzetét kifejezve:

v2 = v2
0 − 2gR(1 + cos α). (1.2)

A feladatból adott, hogy:
v2

0 = kgR, (1.3)
így az előző két egyenlet alapján:

v2 = gR [k − 2 (1 + cos α)] . (1.4)

A körív két végpontja közti mozgás egy ferde hajítás, amelynek kezdősebessége v nagyságú,
és α szöget zár be a vízszintessel. A hajítás során megtett vízszintes távolság a feladat szerint
éppen megegyezik a rés szélességével:

v2 sin 2α

g
= 2R sin α. (1.5)

Behelyettesítve (1.4) eredményét, és kihasználva a kétszeres szögek azonosságát:

gR [k − 2(1 + cos α)] · 2 sin α cos α

g
= 2R sin α. (1.6)

Mivel 0◦ < α < 90◦, ezért sin α ̸= 0, tehát oszthatunk vele:

[k − 2 (1 + cos α)] cos α = 1. (1.7)

Ez cos α-ban egy másodfokú egyenlet, nullára rendezve

2 cos2 α − (k − 2) cos α + 1 = 0 (1.8)

adódik, melynek megoldásai a megoldóképlet alapján:

cos α =
k − 2 ±

√
(k − 2)2 − 8
4 . (1.9)

(a)
Ez esetben k = 5, vagyis

cos α = 3 ± 1
4 . (1.10)

A cos α = 1 esethez α = 0 tartozik, amely nem megengedett, így cos α = 1/2, tehát:

α = 60◦ . (1.11)
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(b)
Látható, hogy az (1.9) kifejezés akkor értelmezhető, ha:

(k − 2)2 − 8 ≥ 0, (1.12)

vagyis
k ≥ 2 +

√
8 = 2 + 2

√
2, (1.13)

avagy
2 −

√
8 ≥ k. (1.14)

Az utóbbi egyenlőtlenség nyilvánvalóan nem teljesülhet, mivel k pozitív. Tehát k minimális
értéke a fentiek szerint:

kmin = 2 + 2
√

2 , (1.15)
ekkor (1.9) alapján:

cos α = 1√
2

, (1.16)

ennek megoldása pedig:
α = 45◦ . (1.17)

2. feladat
A lendületmegmaradást felírva:

mv0 = 3mvTKP, (2.1)

ahonnan a tömegközéppont sebessége:

vTKP = v0

3 . (2.2)

LL

x

TKP

2.1. ábra. A rendszer egy későbbi állapota.

Tehát kezdetben a tömegközéppont lassabb,
mint a középső test, így távolodik tőle. Ez nyil-
ván azért történik, mert a két szélső test „lema-
rad” a középsőhöz képest. Mivel a kötelek végig
feszesek, így a három test által meghatározott
háromszögnek két oldala L hosszú, a harmadik
oldal hosszát pedig jelölje x, ahogy a 2.1. ábra
is mutatja. A feladat meghatározni x legkisebb
értékét.

Figyeljük meg, hogy amíg x csökken, addig a háromszög súlypontja (ami a rendszer tömeg-
középpontja) távolodik a középső testtől. Abban a pillanatban, ahogy x eléri a minimumát, ez
a távolodás abbamarad, tehát a tömegközéppont rendszeréből nézve éppen ekkor lesz a középső
test sebessége nulla. Ez azt jelenti, hogy ekkor ez a test v0/3 sebességgel fog haladni. Ekkor
viszont a másik két test is v0/3 sebességgel halad, hiszen a rendszer szimmetrikus, így ez a
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két test mindig ugyanakkora sebességgel mozog. Észrevehetjük azt is, hogy ebben a kritikus
pillanatban minden sebességvektor párhuzamos v0-al.

Most írjuk fel az energiamegmaradást x legkisebb értékére (azaz a kritikus pillanatban):

1
2mv2

0 + 2k
Q2

L
+ k

Q2

2L
= 3

2mv2
TKP + 2k

Q2

L
+ k

Q2

x
. (2.3)

Látható, hogy a szélső golyók és a középső golyó közötti potenciális energia nem változik, hiszen
a kötelek hossza is változatlan. Felhasználva továbbá vTKP értékét:

1
3mv2

0 + 1
2k

Q2

L
= k

Q2

x
, (2.4)

innen

x = 6LkQ2

3kQ2 + 2Lmv2
0

. (2.5)

3. feladat

(a)
Vizsgáljunk először csak egy lapátot, hiszen a homogén légáramlat (szél) miatt minden lap

ugyanakkora forgatónyomatékot fog generálni. Egy lap keresztmetszete az áramlás irányára
nézve:

A = Ld cos φ. (3.1)
A lapátra ható merőleges irányú légellenállási erő nagysága:

Fm = 1
2Aϱv2

0Cm(φ) = 1
2Aϱv2

0(a − bφ2). (3.2)

A lapáttal párhuzamos erő nagysága:

Fp = 1
2Aϱv2

0Cp(φ) = πAϱv2
0φ. (3.3)

Koordináta-rendszerünket vegyük fel úgy, hogy origója a lapát közepe legyen, az x tengely
mutasson a szél irányába, a z tengely a lapát rögzítése felé, az y pedig a forgás síkjába. Így a
lapátra ható y irányú erő:

Fy = Fm sin φ − Fp cos φ. (3.4)
Behelyettesítve a (3.2) és (3.3) egyenleteket:

Fy = Aϱv2
0

[
(a − bφ2) sin φ

2 − πφ cos φ

]
. (3.5)

Mivel páros sok lapátból áll a szélkerék, így az x irányú erők forgatónyomatékai kioltják
egymást, elég az y irányú erők forgatónyomatékát vizsgálni, ez a (b) részben már nem igaz.

M = L

2 Fy. (3.6)
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Ez az x irányba mutat, tehát a szélre merőleges síkban forgat.
Minden lapátra ugyanez írható fel, így a teljes forgatónyomaték N -szer ekkora lesz. Behe-

lyettesítve a (3.1) egyenletből A értékét:∑
M = N

L

2 Ld cos φ · ϱv2
0

[
(a − bφ2) sin φ

2 − πφ cos φ

]
. (3.7)

Felhasználhatjuk, hogy kis szögek esetén sin φ ≈ φ, cos φ ≈ 1, így:∑
M ≈ N

L

2 Ldϱv2
0

[
(a − bφ2)φ

2 − πφ

]
. (3.8)

Továbbá a φ3-bel arányos tag elhanyagolhatóan kicsi, így a végeredmény:
∑

M = 1
4NL2dϱv2

0 (a − 2π) φ . (3.9)

Jól látható, hogy a való világban épült szélerőművek lapátjai miért sokkal hosszabbak, mint
amilyen szélesek. A fenti képletben a lapát hossza négyzetesen, a szélessége csak lineárisan
szerepel.

(b)
Ebben az esetben is ugyanakkora lesz az y irányú erő, mint az (a) részben, azonban a lapátra

ható x irányú (széllel párhuzamos) erőnek is lesz forgatónyomatéka, amit semmi nem „egyenlít
ki”. Az a probléma ezzel az aszimmetrikus elrendezéssel, hogy a tengelyt terhelő, y irányú eredő
forgatónyomaték is lesz. A lapra ható x irányú erő:

Fx = Fm cos φ + Fp sin φ. (3.10)
Behelyettesítve az (a) részben írt erőket:

Fx = Aϱv2
0

[
(a − bφ2) cos φ

2 + πφ sin φ

]
. (3.11)

Innen az y irányú forgatónyomaték:

My = L

2 Fx = 1
2L2d cos φϱv2

0

[
(a − bφ2) cos φ

2 + πφ sin φ

]
. (3.12)

Ismét felhasználva az (a) részben írt közelítéseket:

My ≈ 1
4L2dϱv2

0a . (3.13)

Az x irányú forgatónyomaték változatlan a korábbi esethez képest, így

Mx = 1
4L2dϱv2

0 (a − 2π) φ . (3.14)

Egy másik probléma ezzel az elrendezéssel, hogy ha a lapát éppen lent van, akkor sokkal nagyobb
forgatónyomaték szükséges, hogy egyáltalán mozgásba jöjjön, és utána is nagyon egyenetlen lesz
a forgás sebessége.
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4. feladat

(a)
A ballon akkor száll fel, amikor a felhajtóerő nagyobb lesz, mint a ballonra ható nehézségi

erő. Előbbi:
Ff = ϱ0V g, (4.1)

a nehézségi erő pedig:
Fg = (m0 + ϱaV )g. (4.2)

Itt ϱa jelöli a hőlégballonban található levegő sűrűségét. A kritikus pillanatban a testre ható
erők egyenlőek, tehát:

ϱ0V = m0 + ϱaV. (4.3)
Innen a kritikus pillanatban a sűrűség:

ϱa = ϱ0 − m0

V
. (4.4)

A hőlégballonban található levegőre az ideális gázok állapotegyenletét felírva:

pkV = n1RTa. (4.5)

Itt felhasználtuk, hogy a hőlégballonban található gáz nyomása a külső légnyomással egyezik
meg, hiszen a légcsere megengedett a két közeg között. A hőmérséklet a kritikus pillanatban
Ta. Innen ezt a gáz sűrűségével kifejezve:

Ta = Mpk

Rϱa

. (4.6)

Ide behelyettesítve a (4.4)-ben kapott eredményt:

Ta = Mpk

R
· V

ϱ0V − m0
. (4.7)

Ezt átalakítva:
Ta = ϱ0V

ϱ0V − m0
T0 . (4.8)

(b)
A talajszinten a légnyomás ballonon belül és kívül azonos, így érdemes mindkét gáztérben

felírni a nyomást. A ballonon kívül:
p0 = ϱ0

RT0

M
, (4.9)

a ballonon belül pedig:
p0 = ϱ1

RT1

M
. (4.10)
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Innen a belső sűrűség kifejezhető a hőmérsékletekkel:

ϱ1 = ϱ0
T0

T1
. (4.11)

A ballonra mindig a felhajtóerő és a nehézségi erő eredője fog hatni. Előbbinek a nagysága
z magassággal a talaj felett:

Ff(z) = ϱk(z)V g. (4.12)

A nehézségi erő pedig állandó nagyságú:

Fg = (m0 + ϱ1V )g. (4.13)

Az eredő erő: ∑
F (z) = ϱk(z)V g − (m0 + ϱ1V )g. (4.14)

Behelyettesítve a feladatban megadott ϱk(z) értéket:∑
F (z) = −αV gz + (ϱ0V − m0 − ϱ1V )g. (4.15)

Láthatjuk, hogy az eredő erő utolsó tagja konstans, az első pedig z-vel egyenesen arányos, a
kitérés irányával ellentétes irányú. Mivel a teljes tömeg állandó, ebből tudjuk, hogy a hőlégbal-
lon harmonikus rezgőmozgást fog végezni valamilyen z0 egyensúlyi helyzet körül –ha felszáll–
akárcsak egy rugóra akasztott test. A z0 magasságban az eredő erő zérus lesz:

αV z0 = ϱ0V − ϱ1V − m0. (4.16)

Innen az egyensúlyi z0 magasság:

z0 = 1
α

(
ϱ0 − ϱ1 − m0

V

)
. (4.17)

A maximális magasság ennek a kétszerese lesz. Felhasználva (4.11)-et:

zmax = 2
α

[
ϱ0

(
1 − T0

T1

)
− m0

V

]
. (4.18)

A keresett időt a rezgés periódusidejéből kapjuk. Ehhez a (4.15)-ös egyenletből fejezzük ki
a hőlégballon gyorsulását:

a(z) = − αV g

m0 + ϱ1V
· z + ϱ0V g − ϱ1V g − m0g

m0 + ϱ1V
. (4.19)

A rugóra akasztott test analógiájából tudjuk, hogy az első tag −ω2z-vel feleltethető meg, ahol
ω a rezgés körfrekvenciája. Ezt felírva:

ω =
√

αV g

m0 + ϱ1V
. (4.20)
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Innen a periódusidő:

T = 2π

√
m0 + ϱ1V

αV g
. (4.21)

A maximális magasság eléréséig eltelt idő ennek a fele lesz. Felhasználva (4.11)-et:

t1 = π

√
m0T1 + ϱ0V T0

αV gT1
. (4.22)

5. feladat
A teljes áramkör ellenállását jelölje R. Ekkor nyilván a kérdőjellel jelölt doboz ellenállása is

R, így felírható, hogy
1
R

= 1
R1 + R

+ 1
R2 + x

, (5.1)

ahonnan átrendezés után
x = R1R + R2 − R1R2

R1
(5.2)

adódik. Mivel a feszültségmérő 0 V-ot jelez, így

R1

R2
= R

x
, (5.3)

amelybe az (5.2) egyenlet szerint x-et helyettesítve:

R2 + R(R1 − R2) − R1R2 = 0. (5.4)

A másodfokú egyenletet megoldva a két megoldás R2 és −R1, de mivel R pozitív (ahogy R1
és R2 is), így az egyetlen fizikai megoldás

R = R2. (5.5)

Ezt az (5.2) egyenletbe helyettesítve kapjuk a végeredményt:

x = R2
2

R1
. (5.6)
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