
1. feladat
Mivel a feladat szerint „hosszú idő után” a kő állandó nagyságú sebességgel halad a lej-

tő síkjával párhuzamosan, feltételezhetjük, hogy a láva áramlása már állandósult, és csak a
lejtő irányával párhuzamos sebességkomponenssel rendelkezik. Tehát minden folyadékdarabka,
valamint a kő is egyenes vonalú egyenletes mozgást végez, a rá ható erők eredője zérus.

A lejtő irányával párhuzamosan felírva a kőre a dinamika alapegyenletét:

mg sin α = Ff, (1.1)

ahol Ff a kő aljára ható, folyadéktól származó erő (mely egy, a „tapadási súrlódáshoz” hason-
ló jellengű erőként is elképzelhető, hiszen a felső réteg és a kő együtt mozognak); a feladat
nehézsége ennek meghatározásában rejlik.

Az útmutatásban leírt ötletet alkalmazva bontsuk a lávát vékony rétegekre a lejtő síkjával
párhuzamosan és vizsgáljuk egy-egy ilyen kicsiny vastagságú réteg mozgását!
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1.1. ábra. A láva kicsiny rétegekre bontása.

Legyen az egyenlő vastagságú rétegek száma N , ekkor egy réteg vastagsága ∆y = h/N .
Jelölje az i-edik kicsiny réteg lejtővel párhuzamos sebességét ui. Ekkor az i-edik folyadékréteg
tetején (pozitív y) fellépő nyíróerő:

Fi = µA
ui − ui−1

∆y
. (1.2)

Mivel a folyadék is állandósult állapotban van, minden kis rétegnek egyensúlyban kell lennie.
Az i-edik rétegre felírva az erőegyensúlyt a lejtővel párhuzamosan:

Fi−1 − Fi = ϱA∆yg sin α =⇒ Fi = Fi−1 − ϱA∆yg sin α. (1.3)

A fenti egyenlet egy rekurzív képletet ad az egyes határfelületeken fellépő nyíróerőre, ezt meg-
oldva Fi-re a következő összefüggés adódik:

Fi = F0 − iϱA∆yg sin α, (1.4)
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ahol F0 a talajról átadódó erő. Felhasználva (1.1)-et, az N -edik erőre a következő egyenlet írható
fel:

FN = Ff = mg sin α = F0 − NϱA∆yg sin α. (1.5)
Kihasználva, hogy ∆yN = h:

mg sin α = F0 − ϱAhg sin α, (1.6)
azaz a talajról átadódó erő:

F0 = mg sin α + ϱAhg sin α. (1.7)
A legfelső réteg (azaz a kő) állandósult sebességét a kicsiny folyadékrétegek között bekövet-

kező „sebességugrások” összege adja:

U =
N∑

i=1
(ui − ui−1), (1.8)

amely az (1.2) egyenlet alapján:

U =
N∑

i=1

∆y

µA
Fi. (1.9)

Behelyettesítve (1.4)-et:

U = ∆y

µA

N∑
i=1

(F0 − iϱA∆yg sin α) , (1.10)

majd felbontva az összegzést az állandó tagokat kihozva:

U = ∆y

µA

(
NF0 − ϱA∆yg sin α

N∑
i=1

i

)
. (1.11)

A megmaradt összegzés éppen a pozitív egész számok összege 1-től N -ig, melyre használhatjuk
a jól ismert N(N + 1)/2 összegképletet:

U = ∆y

µA

(
NF0 − ϱA∆yg sin α

N(N + 1)
2

)
. (1.12)

Ismét felhasználva, hogy ∆yN = h:

U = h

µA

(
F0 − ϱAhg sin α

N + 1
2N

)
. (1.13)

Behelyettesítve (1.7)-et és csoportosítva a tagokat:

U = mgh sin α

µA
+ h2ϱg sin α

µ

(
1 − N + 1

2N

)
= mgh sin α

µA
+ h2ϱg sin α

µ

N − 1
2N

. (1.14)

A diszkrét modellünk az N → ∞ esetben adja vissza a folytonos folyadékot. Ekkor az N -t
tartalmazó tört határértéke 1/2, azaz a kapott összefüggés:

U = mgh sin α

µA
+ h2ϱg sin α

2µ
. (1.15)

A fenti kifejezésben már csak a keresett dinamikai viszkozitás az ismeretlen, erre rendezve:

µ = h sin α

U

(
mg

A
+ ϱgh

2

)
. (1.16)
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2. feladat
Először belátjuk, hogy – a gömb esetével analóg módon – ha egy tömör ellipszoidot hasonló

ellipszoidok által határolt héjakra bontunk, egy belső pont csak a belső héjak gravitációs hatását
érzi. Tekintsünk egy tetszőleges P pontot az üreges, vékony héj belsejében, és vegyünk két
ellentétes irányú, kis ∆Ω térszögű kúpot. A kúpok a héjból ∆A1 és ∆A2 felületdarabokat
metszenek ki r1 és r2 távolságokban. A térszög definíciója alapján ∆Ai = r2

i ∆Ω. Mivel a
héjat határoló felületek hasonlóak és koncentrikusak, geometriai tétel, hogy a héj vastagsága
látóirányban mérve a két oldalon megegyezik (AB = CD a 2.1. ábrán). A kivágott tömegek
aránya tehát csak a távolságok négyzetével arányos (∆m ∼ r2), ami éppen kiejti a gravitációs
erő 1/r2-es csökkenését. Így a két szemközti felületelem vonzása semlegesíti egymást.

D
C

P
B

A

2.1. ábra. A geometriai tétel illusztrációja a tárgyalt elrendezésben.

A P pontban az összes rajta kívül eső héj gravitációs hatása nulla, mivel az előző érvelés
tetszőleges irányra alkalmazható. Azaz a P pont térerősségét kizárólag a ponton átmenő, az
eredetivel hasonló belső ellipszoid határozza meg. Tehát egy tetszőleges r helyvektorral jelle-
mezhető pontban a gravitációs térerősség:

g(r) = −Gϱ
∫

Vr

r − x

|r − x|3
dV, (2.1)

ahol x a térfogati integrál változója.
Végezzünk el egy λ-szorosára történő nagyítást a teljes rendszeren. Ezzel egy hasonló, de más

méretű ellipszoidot kapunk. A pozícióvektorok r′ = λr, x′ = λx és a térfogatelem dV ′ = λ3dV
transzformációja után az integrálból λ kiemelhető. Ekkor arra jutunk, hogy g(λr) = λg(r),
vagyis a térerősség lineárisan függ a helyvektortól.

Felhasználva a galaxis laposságát, jó közelítéssel minden mozgás a galaxis síkjában törté-
nik. Ekkor a gravitációs erő galaktikus síkba eső komponense biztosítja az anyag centripetális
gyorsulását, így:

mg(r) = mω2r. (2.2)
Mivel a gravitációs térerősség lineáris, következik, hogy a galaxis merev testként forog, állandó
ω szögsebességgel:

v(r) = ωr. (2.3)
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A mozgási energia kiszámításához szükségünk van a rendszer tehetetlenségi nyomatékára és a
kinematikai adatokra. A tömegközépponti (vTK) és a kerületi (vker) sebességek a mért adatokból:

vTK = vA + vB

2 , vker = ωR = vA − vB

2 . (2.4)

A forgási ellipszoid z forgástengelyére vonatkozó tehetetlenségi nyomatéka megegyezik egy R
sugarú, M tömegű homogén gömbével, mivel a z irányú lapítás nem változtatja meg a tö-
megelemek forgástengelytől mért távolságát, tehát Θ = 2MR2/5. A teljes mozgási energia a
tömegközéppont haladásából és az akörül történő forgásból adódik össze:

Ekin = 1
2Mv2

TK + 1
2Θω2

= 1
2M

(
vA + vB

2

)2
+ 1

2

(2
5MR2

)(
vA − vB

2R

)2
. (2.5)

Egyszerűsítés után a végeredmény:

Ekin = M

8 (vA + vB)2 + M

20 (vA − vB)2 . (2.6)
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2.2. ábra. A felhasznált geometriai té-
tel bizonyítása egy affin transzformá-
ció segítségével.

Megjegyzés
Hogy teljesebb képet kapjunk, az alábbiakban ki-

térünk a feladat útmutatásában megadott és a meg-
oldás során felhasznált geometriai tétel bizonyítására.
Tekintsük ehhez a 2.2. ábrán látható affin transzformá-
ciót, amely két koncentrikus kört az esetünkben vizsgált
koncentrikus ellipszisekbe visz át.

Metsszük el az eredeti kört egy tetszőleges P bel-
ső ponton áthaladó egyenessel, ekkor a metszéspontok
rendre A, B, C és D. Legyen továbbá az A pontnak az
affinitás irányában B-vel egy magasságba vetített képe
Ax. Hasonlóan definiálhatjuk a Dx pontot is. A fenti
pontok képei az affin transzformáció után A′, B′, C ′,
D′, A′

x és D′
x.

A kör szelőire könnyen látható, hogy AB = CD, to-
vábbá AxB = CDx és AxA = DxD. Az affinitás irányá-
val párhuzamos szakaszok hossza a transzformáció ha-
tására λ-szorosára csökken, míg a merőleges szakaszok
hossza változatlan. Így AxB = CDx = A′

xB′ = C ′D′
x,

illetve λAxA = A′
xA′ és λDDx = D′D′

x. Mindezekből
a Pitagorasz-tétel felhasználásával könnyedén adódik a
kívánt végeredmény: A′B′ = C ′D′.
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3. feladat
A feladatban közölt leírás alapján a kavitáció jelenségének szempontjából kritikus szakasz a

beszűkült keresztmetszet. Itt ugyanis a kontinuitás törvénye alapján az áramlási sebesség hirte-
len növekszik, ez pedig a Bernoulli-törvény értelmében a nyomás hirtelen csökkenését eredmé-
nyezi, ami éppen a kavitáció kiváltó oka. Elsőként tehát határozzuk meg a kavitációhoz tartozó
kritikus gőznyomás értékét!

A beszűkült keresztmetszetben az áramlási sebesség (kontinuitás alapján, összenyomhatat-
lan folyadékot feltételezve):

A0u0 = A0

5 u1 =⇒ u1 = 5u0. (3.1)

Bernoulli-törvényét felírva egy a szűkület előtti és a szűkületbeli pontra:

p0 + 1
2ϱu2

0 = p1 + 1
2ϱu2

1 =⇒ p1 = p0 + 1
2ϱ(u2

0 − u2
1), (3.2)

majd a (3.1) egyenletet felhasználva a szűkületbeli nyomás:

p1 = p0 − 12ϱu2
0 = 42 kPa. (3.3)

Kavitáció abban az esetben történik, ha a telített gőznyomás eléri a fentiekben kiszámolt nyo-
másértéket, azaz pkav = p2 = 42 kPa. A mellékelt telített gőznyomás–hőmérséklet grafikon
alapján az ehhez tartozó hőmérséklet: Tkrit ≈ 76 ◦C.

Mivel a feladatban közölt ábra alapján a fűtőelem éppen a kritikus keresztmetszet előtt
helyezkedik el, ezért a kavitáció jelensége akkor lépne fel, mikor az első, fűtőelemből kilépő
folyadékdarabka hőmérséklete eléri Tkrit értékét. Tehát a teljes folyadéknak nem kell Tkrit
hőmérsékletre melegednie!

Határozzuk meg, hogy a fűtőelemen áthaladva mennyivel növekszik a víz hőmérséklete!
Ehhez elsőként írjuk fel a tervezett paraméterek mellett kialakuló a tömegáramot:

ṁ = ϱ
D2

0π

4 u0. (3.4)

Ezt felhasználva a hőmérséklet-növekedés:

∆Tf = P

cvṁ
= 4P

πcvϱu0D2
0

= 0,81 ◦C, (3.5)

tehát a teljes víztömegnek ennyivel kisebb hőmérsékletet kell elérnie a kritikushoz képest, hogy
a kavitáció kialakulhasson. A szükséges hőközlés:

Q = cvm∆T = cvm(Tkrit − ∆Tf − T0). (3.6)
Ez alapján a melegítés időtartama a megadott fűtőteljesítményt felhasználva:

t = Q

P
= cvm(Tkrit − ∆Tf − T0)

P
, (3.7)

a numerikus értékeket behelyettesítve:

t = 5767 s ≈ 96 min . (3.8)
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4. feladat
A legkülső (ábrán is látható) feketedoboz ellenállását jelölje R3. Vegyük észre, hogy a teljes

rendszer mindössze annyiban különbözik ennek a doboznak a belsejétől, hogy ez utóbbiban
minden ellenállás α-szorosa az eredeti áramkör ellenállásértékeinek. Tehát míg az eredeti rend-
szer i. szintjén a bal felső ellenállás αi−1R1, addig a doboz i. szintjén ugyanez az ellenállás αiR1.
A Kirchhoff- és Ohm-törvények linearitása miatt ez azt jelenti, hogy

R3 = αRe, (4.1)

ahol Re a teljes rendszer eredő ellenállását jelenti a C és D pontok között. A felső ágban sorosan
kapcsolódik R1 és R3, míg az alsó ágban R2 és az ismeretlen x. Ennek megfelelően a felső, illetve
alsó ág eredő ellenállása:

Rf = R1 + R3, (4.2)

Ra = R2 + x. (4.3)

Az A és B pontok ekvipotenciálisak, vagyis a két pont közötti feszültség zérus. Ez azt jelenti,
hogy a felső és alsó ágban azonos arányban oszlik meg a feszültség. Ezért a feszültségosztásra
az alábbi összefüggés írható fel:

R1

Rf
= R2

Ra
. (4.4)

A definíciókat behelyettesítve:
R1

R1 + R3
= R2

R2 + x
. (4.5)

Az egyenletet x-re rendezve:
x = R2

R1
R3. (4.6)

A teljes áramkör eredő ellenállása a két ág párhuzamos kapcsolásából adódik:

Re = RfRa

Rf + Ra
. (4.7)

A (4.5) összefüggés szerint
Ra = R2

R1
Rf , (4.8)

amit behelyettesítve (4.7)-be, egyszerűsítés után:

Re = R2

R1 + R2
Rf (4.9)

adódik, amibe (4.2)-t és (4.1)-et helyettesítve:

R3 = α
R2

R1 + R2
(R1 + R3). (4.10)
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Az egyenletet R3-ra megoldva:
R3 = αR1R2

R1 + R2(1 − α) . (4.11)

Ebből, valamint a (4.6) összefüggésből a keresett x ellenállás:

x = αR2
2

R1 + R2(1 − α) . (4.12)

5. feladat

1. megoldás
A feladat megoldásához azt kell megérteni, hogyha egy test végigmegy egy pályán, és egy

másik kétszer olyan gyorsan megy végig ugyanazon a pályán, akkor az utóbbi sebessége kétszer,
gyorsulása négyszer akkora lesz, mint az előbbié.

Ehhez először nézzük meg, hogy mi történne, ha ugyanabba az irányba lőnénk ki külön a
részecskéket, de a másodikat az elsőnél kétszer nagyobb sebességgel. Írjuk fel a mozgásegyenle-
teket:

mr̈1 = k
Qq

|r1|3
r1, mr̈2 = k

4Qq

|r2|3
r2. (5.1)

Tegyük fel, hogy az első egyenlet megoldása r1. Vegyük észre, hogy ekkor az r2(t) = r1(2t) hoz-
zárendeléssel megadott r2 függvény megoldása lesz a második egyenletnek. Ennek igazolásához
először vizsgáljuk meg a gyorsulások viszonyát a deriválás láncszabálya szerint:

r̈2(t) = 4r̈1(2t). (5.2)

Az első, r1-re vonatkozó mozgásegyenletet behelyettesítve:

mr̈2(t) = 4mr̈1(2t) = 4k
Qq

|r1(2t)|3 r1(2t) = k
4Qq

|r2(t)|3
r2(t). (5.3)

Ebből tehát látható, hogy a fent definiált r2 valóban kielégíti a második mozgásegyenletet. Így
ha az egyik részecske végigmegy valamilyen tetszőleges pályán, akkor elviekben a másik test is
végig tud menni ugyanazon pályán, kétszer olyan gyorsan.

De mi határozza meg, hogy milyen pályán mozog a test? A kezdőfeltételek! Tegyük fel, hogy
az első test kezdőfeltételei r1(0) = r1(t = 0) és ṙ1(0) = ṙ1(t = 0). Ekkor észrevehetjük, hogy
r2(t) = r1(2t) illeszthető a második test kezdőfeltételeihez, mivel:

r2(0) = r1(0), ṙ2(0) = 2ṙ1(0). (5.4)

Tehát a két test valóban ugyanazon a pályán fog mozogni, csak a második kétszer olyan gyorsan,
mint az első.

Innen már csak azt kell végiggondolni, hogy min változtat az, hogy a második testet az
ellenkező irányba lőjük ki. Csak annyit, hogy ugyanazon pályán az ellenkező irányba fog haladni.
A fentiek alapján tehát a megtett utak aránya 1 : 2, és a testek akkor találkoznak, amikor a
kettejük által megtett út összege kiadja a teljes pályát. Ez a pálya egyharmadánál lesz, azaz
T/3 idővel az indítás után.
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2. megoldás
A megoldás első lépéseként használjuk ki, hogy egy tetszőleges q > 0 töltés pályája egy

rögzített Q < 0 töltés körül olyan ellipszis, melynek a fél nagytegelye és a q töltés teljes Et
energiája közti összefüggés:

Et = kQq

2a
. (5.5)

Ezt felhasználva a feladat q töltésére:

1
2mv2

0 + kQq

r0
= kQq

2aq

, (5.6)

míg a másik kis töltésre:
1
2m(2v0)2 + 4kQq

r0
= 4kQq

2a4q

. (5.7)

Az (5.6) és (5.7) egyenleteket összehasonlítva látszik, hogy utóbbiban egy néggyel való egysze-
rűsítés után aq = a4q adódik, azaz a két mozgó töltés pályájának fél nagytengelye ugyanakkora.
Mivel a kiinduláskor a két töltés egy pontból indul ellentétes irányú sebességgel, így a pályájuk
érintője egyezik és tudjuk, hogy a pályák fókuszpontja és fél nagytengelye is ugyanaz. Ebből
következik, hogy a két test egy pályán mozog1, ahogy az 5.1. ábrán látható.

5.1. ábra. A töltések kiinduló elrendezése és pályája.

Az energiamegmaradás egyenletét a pálya tetszőleges pontjára felírhatjuk. Az (5.6) és (5.7)
közti 4-es szorzó miatt egy adott pontban a 4q töltés mindig kétszer akkora sebességgel halad,
mint a q töltésű test haladna azon pontban. Ezáltal a 4q töltés periódusideje T/2. (Ez Kepler
III. törvényének megfelelő alkalmazásával is adódik.)

1Bár az állítás nem teljesen triviális, röviden belátható annak ismeretében, hogy egy ellipszis adott pontjából
két fókuszához húzott vezéregyenesek szögfelezője merőleges az ellipszis érintőjére. Konkrétabban, mivel a Q
töltés helye, mint fókuszpont és a fél nagytengely adott, az egyetlen szabadsági fokunk a másik fókuszpont
helyzete. Ennek különböző megválasztásai esetén a fent említett szögfelező más és más irányú, így az arra
merőleges érintők is. Összességében tehát egyedül akkor eshet egybe a két pálya érintője, ha azok második
fókuszai, és így a teljes ellipszisek is azonosak.
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Összefoglalva, a két töltés ugyanazon pályán halad ellentétes irányban, és az egyik területi
sebessége minden pillanatban duplája a másikénak, tehát a töltések azon pontban találkoznak
újra, ahol 1:2 arányban súrolták az ellipszis területét. Ide pedig T/3 idő elteltével jutnak el az
indulástól mérten.

9/9. oldal


	feladat
	feladat
	feladat
	feladat
	feladat

