
D1. Merlinnek van sok üres doboza egymás mellett. Arthur beletesz az első dobozba valahány kavicsot, majd megad
egy 1-nél nagyobb k egész számot. Ezután Merlin a második dobozba annyi kavicsot tesz, amennyi az első dobozban lévő
kavicsok számának k-szorosa. Merlin ezt ismételgetve minden dobozba az eggyel korábbi dobozban lévő kavicsok számának
k-szorosát teszi. Ha a bekerülő kavicsok számának nem lenne közös számjegye az előző dobozban lévők számával, akkor
azt már nem teszi bele és abbahagyja a kavicspakolgatást. Ha valamelyik dobozba 1000-nél több kavics kerülne, akkor
azt már nem teszi bele és szintén abbahagyja. Végül Merlin annyi aranyat ad Arthurnak, ahány dobozban van kavics.
Legfeljebb hány aranyat szerezhet Arthur?

Például, ha Arthur az első dobozba 23 kavicsot tesz és a 4-es számot adja meg, akkor a második dobozba 92 darab
kerül, mert a 23-nak és a 92-nak van közös számjegye. Viszont a harmadikba egy sem kerül, mert a 92 ·4 = 368-nak nincs
közös számjegye a 92-vel. Ebben az esetben tehát Arthur kettő aranyat szerez.
Jánosik Áron feladata

1. megoldás: Arthur legfeljebb 7 aranyat szerezhet. Erre egy jó példa, ha az első dobozba 10 aranyat
tesz, és k értékét 2-nek választja. Ekkor a dobozokba rendre 10, 20, 40, 80, 160, 320, 640 kerül, a
nyolcadikba pedig meg már a 2 · 640 = 1280 > 1000 nem kerül be.

Bebizonyítjuk, hogy 7-nél több aranyat nem tud szerezni. Tegyük fel, hogy mégis tud, és még a
nyolcadik dobozba is kerül kavics. Jelölje a az első dobozba rakott kavicsok számát. Ekkor a nyol-
cadik dobozba ak7 kavics kerül, amiről tudjuk, hogy legfeljebb 1000. Ekkor az nem lehetséges, hogy
k > 2, mert ekkor ak7 ≥ 37 > 1000 lenne. Így k = 2, és a nyolcadik dobozba 128a kavics került. Itt
128a ≤ 1000, így a ≤ 7. Viszont bármely pozitív egyjegyű számot 2-vel megszorozva olyan számot ka-
punk, ami nem rendelkezik közös jeggyel az eredeti egyjegyű számmal, így már a második dobozba sem
kerülnének kavicsok, ez ellentmondás. Így a bizonyítással készen vagyunk, valóban 7 arany a maximum.

2. megoldás: Vezessünk be egy p ismeretlent, ami az Arthur által az első dobozba rakott kavicsok
számát jelölje. Tudjuk, hogy Arthur által megadott k egész számra a következő feltétel teljesül: k ≥ 2.
Jelöljük el Merlin dobozainak számát n-nel, ekkor Merlin utolsó dobozában a kavicsok száma: p ·kn−1.
Erre a feladat szövege szerint a következő feltételnek kell teljesülnie: p · kn−1 ≤ 1000. p minimális
értéke esetén (p = 1) vizsgájuk meg kis k értékekre milyen határfeltételt szab meg az összefüggésünk n
értékére: Ha k = 2 → n ≤ 10, ha k = 3 → n ≤ 7, ha k = 4 → n ≤ 5. Megfigyelhető, hogy k értékének
növelésével n feltétele csökken. Mivel azt szeretnénk elérni, hogy minél több doboza legyen Merlinnek,
ezért vizsgáljuk meg, hogy tudunk-e k = 2 esetén legalább 7 dobozba kavicsot helyezni. Ahhoz, hogy
az egymást követő dobozokban lévő kavicsok számának legyen közös számjegye, a legegyszerűbb, ha
az első dobozban a kavicsok száma 0-ra végződik, így az összes többi dobozban is a kavicsok számának
utolsó számjegye 0 lesz. Mivel azt szeretnénk, hogy minél több dobozba kerüljön kavics, így optimális
esetben 10 kavicsot rak Arthur az első dobozba. Ekkor 7 dobozba kerülhet kavics (utolsó dobozba 640
kavics kerül), ahhoz hogy egyik dobozban lévő kavicsok száma se haladja meg az 1000-t. Tudtunk 7
dobozra konstrukciót mutatni, így k > 2-vel már nem kell foglalkozni. Kérdés már csak az, hogy lehet-e
8 dobozba kavicsokat rakni. Ehhez az kell, hogy az első dobozba helyezett kavicsok számát csökkentsük.
Ekkor egyjegyű lesz az első dobozba helyezett kavicsok száma, azonban nincs olyan egyjegyű szám,
amelynek lenne azonos jegye a kétszeresével a 0 kivételével, de 0 kavicsot nem helyezhetek az első
dobozba. Tehát Arthur legfeljebb 7 aranyat szerezhet.
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D2. Felírtunk a táblára három darab 1-es számot. Egy lépésben kiválasztunk két számot, majd az egyiket letöröljük,
és helyére a két kiválasztott szám összegét vagy különbségét írjuk. Tehát ha az a és b számokat választottuk ki, akkor
a-t vagy b-t letöröljük, a helyére pedig a+ b vagy |a− b| kerül. Ilyen lépéseket végezve:
a) Elérhető-e, hogy a táblán a három szám az 53, 2026, 2036 legyen?
b) Elérhető-e, hogy a táblán a három szám a 0, 0, 0 legyen?
c) Elérhető-e, hogy a táblán a három szám a 42, 91, 112 legyen?
Halasi Gergő és Török Eszter feladata

Megoldás: A megengedett lépések így is megfogalmazhatók:

• amikor a és b helyére a+ b és b kerül, akkor a-hoz hozzáadtuk b-t,

• amikor a és b helyére |a− b| és b kerül, akkor a-ból kivontuk b-t (melyet a feladat szövege szerint
úgy kell érteni, hogy ha negatív lesz az eredmény, akkor annak az abszolútértékét vesszük).

Vegyük észre, hogy amíg van a táblán legalább egy darab 1-es, addig a másik két számhoz akárhány-
szor hozzáadhatunk 1-et. Így a kezdőállapotból indulva és egy 1-est megtartva a másik két szám értékét
tetszőleges természetes számokra beállíthatjuk.

a) Igen, elérhető. Megadunk egy lehetséges lépéssorozatot:

• A fent említett módszerrel először elérjük, hogy a táblán az 1, 3, 2026 számok szerepeljenek.

• Az 1-eshez hozzáadjuk 3-szor a 3-ast, így az 1-es helyett 10-est kapunk.

• A 3-ashoz hozzáadjuk 5-ször a 10-est, így a 3-as helyett 53-ast kapunk.

• Végül a 10-hez hozzáadjuk a 2026-ot, így megkapjuk a 2036-ot.

Ezzel tehát megkaptuk a kívánt három számot a táblán.

b) Nem lehetséges. Gondolkodjunk visszafelé. Egy lépésben a táblán lévő számok közül maximum
egy darab változhat meg. Tehát, ahhoz, hogy mindhárom szám 0 legyen, az utolsó lépés előtt vagy
három 0-nak kellett lennie a táblán, vagy két 0-nak és egy 0-tól különböző számnak.

• Abban az esetben, ha a táblán három 0 volt az utolsó lépés előtt, akkor az utolsó lépésben
semmi sem történt a számokkal, így haladjunk egy újabb lépést visszafelé, a gondolatmenetet
megismételve.

• Abban az esetben, ha két 0 és egy 0-tól különböző szám volt a táblán az utolsó lépés előtt, akkor
ezekből egy lépéssel kellett elérnünk a csupa 0 helyzetet. Ehhez a 0-tól különböző számnak a
műveletben részt vevő két szám között kellett lennie. A másik szám egy 0 volt, azonban egy
nemnulla számhoz 0-t hozzáadva vagy kivonva a szám nem változik meg, ez ellentmondás.

Így az valóban nem érhető el a kezdőállapotból, hogy három 0 legyen a táblán.

c) Vegyük észre, hogy a 42, a 91 és a 112 mind oszthatók 7-tel, a kiinduló állapotban viszont egyik
szám sem. Itt is gondolkodjunk visszafelé. Ahhoz, hogy három 7-tel osztható számot kapjunk, az utolsó
lépés előtt vagy szintén három darab 7-tel osztható számunk volt, vagy pedig két 7-tel osztható és egy
7-tel nem osztható.

• Abban az esetben, ha a táblán három 7-tel osztható szám volt az utolsó lépés előtt, akkor
ugyanabban a szituációban vagyunk, mint a folyamat végén, és a kezdőállapotot nem értük
el (mert abban 7-tel nem osztható számok vannak). Haladjunk egy újabb lépést visszafelé, a
gondolatmenetet megismételve.
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• Abban az esetben, ha két 7-tel osztható szám és egy 7-tel nem osztható szám volt a táblán
az utolsó lépés előtt, akkor ezekből egy lépéssel el kellett tudnunk érni a csupa 7-tel osztható
helyzetet. Ehhez a 7-tel nem osztható számnak a műveletben részt vevő két szám között kellett
lennie, a másik szám pedig egy 7-tel osztható volt. Ám egy 7-tel nem osztható számhoz hozzáadva
vagy abból kivonva egy 7-tel osztható számot, a kapott szám 7-tel továbbra sem lesz osztható,
ez ellentmondás.

Így valóban nem lehet elérni a kezdőállapotból azt sem, hogy a táblán lévő három szám a 42, 91 és
112 legyen.

Érdekesség: Az euklideszi algoritmus használatával bármilyen olyan számhármas elérhető a megadott
lépésekkel, melyben a három szám legnagyobb közös osztója megegyezik a kiinduló három szám leg-
nagyobb közös osztójával.
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D3. Bizonyítsátok be, hogy a 7-nek van olyan többszöröse, amelyben a számjegyek összege
a) pontosan 2,
b) pontosan 2028,
c) pontosan 2029.
Hegedűs Dani feladata

Megoldás:
1. megoldás:

a) Olyan számot, aminek a számjegyeinek összege 2, úgy kaphatunk, ha összeadunk az 1, 10, 100,
1000, ... számok közül kettőt. Az 1 héttel osztva 1 maradékot ad, a 10 héttel osztva három maradékot
ad. Írásbeli osztással kiszámolható, hogy 100 = 14× 7 + 2 és 1000 = 142× 7 + 6, azaz a 100 kettő, az
1000 pedig hat maradékot ad héttel osztva. Így 1000+1 osztható lesz héttel és ennek számjegyösszege
2. Valóban, 1001 : 7 = 143.
b) Ha egy héttel osztható számot megszorzunk egy pozitív egésszel, akkor továbbra is héttel os-
ztható marad, illetve héttel osztható számok összege is héttel osztható. Így például héttel osztható
10010000 = 1001 × 1000 és emiatt 10010000 + 1001 = 10011001 is az. Folytatva a gondolatmenetet,
ha egymás mögé írjuk a héttel osztható 1001-et 1014-szer, akkor is héttel osztható számot kapunk,
aminek a számjegyösszege 2028 lesz, hiszen ennyi 1-es jegye van. (Hasonlóan elérhető tetszőleges páros
számjegyösszegű héttel osztható szám ezzel a módszerrel.)
c) Az előző rész mintájára tudunk készíteni olyan héttel osztható számot, amiben a számjegyek összege
2026, mégpedig 1013 darab egymás után írt 1001-es segítségével. Adjunk ehhez a számhoz 21-et, ami
szintén osztható héttel. A kapott héttel osztható szám így 10011001 helyett 10011022-re végződik,
így 3-mal nőtt a számjegyek összege. A kapott szám egy héttel osztható, 2029 számjegyösszegű szám.
(Hasonlóan elérhető tetszőleges egynél nagyobb páratlan számjegyösszegű héttel osztható szám.)

2. megoldás:
Minden n > 1 egész számhoz mutatunk egy ilyen többszöröst az alábbi módon: ha n-et 7-tel

maradékosan osztjuk, akkor megkapjuk egy felírását n = a · 7 + b alakban, ahol a, b természetes
számok. Először n ≤ 8 esetén keresünk megfelelő számokat, az alábbiak például megfelelőek:

• n = 2-re az 1001,

• n = 3-ra a 21,

• n = 4-re a 112,

• n = 5-re a 14,

• n = 6-ra a 42,

• n = 7-re a 7,

• n = 8-ra a 35.

Általános esetben pedig egy a+4-jegyű számot adunk meg, amelynek b > 1 esetén első a, egyébként
első a− 1 jegye 7-es, az utolsó négy jegy pedig a megfelelő hetes maradékhoz tartozó szám a fenti hét
esetből, esetlegesen az elején 0-kkal kiegészítve, ha nem szükséges mind a négy számjegy használata.
Például n = 18 = 2 · 7 + 4 esetén a megadott számunk a 770112, hiszen n = 4-re 112 a számunk, ezt
két 7-essel kell kiegészítenünk és egy 0-val, mivel a 112 csupán háromjegyű. Az így kapott számnak
épp n lesz a számjegyeinek összege, és 7-tel is osztható, hiszen az utolsó 4 jegy egy 7-tel osztható
számot alkot, és ehhez csak 700 . . . 0 alakú, szintén 7-tel osztható számokat kell hozzáadnunk, hogy
a teljes számot megkapjuk. Ezzel a módszerrel tehát tetszőleges számjegyösszegre meg tudunk adni
megfelelő héttel osztható számot. (2 számjegyösszegre az 1001, 2028 számjegyösszegre 77 . . . 70014 és
2029 számjegyösszegre 77 . . . 70042 lesz a példa.)
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D4. Az ABCD rombuszban az oldalak hossza 1 hobbitláb, illetve BCD∢ = 150◦. Legyen az AC és BD átlók
metszéspontja E, továbbá a BC oldal felezőpontja F . Legyen az E-ből AB-re állított merőleges AB-vel vett metszéspontja
G, az AB oldal felezőpontja pedig H.
a) Mekkora az EH szakasz hossza?
b) Mekkora az FG szakasz hossza?
Hegedűs Dani feladata

Megoldás: Mivel E az átlók metszéspontja, ezért E felezi az AC szakaszt. Tudjuk továbbá, hogy F
felezi BC-t, így EF középvonal ABC-ben. Tudjuk továbbá, hogy EG merőleges AB-re, ezért EF -re
is. Vagyis EGF egy derékszögű háromszög, amelyben az E-nél van a derékszög. A feladat (b) része,
hogy mekkora a GF szakasz hossza. Ezt Pitagorasz-tétel segítségével fogjuk kiszámolni, amihez először
az EF , majd az EG befogó hosszát számoljuk ki. Az utóbbihoz az EH szakasz hosszát is kiszámoljuk,
ami a feladat (a) kérdése.

Láttuk már, hogy EF középvonal ABC-ben, vagyis EF
AB = CF

CB = 1
2 . Viszont AB a rombusz egy

oldala, vagyis AB = 1, amiből azt kapjuk, hogy EF = 1
2 .

Ezután rátérünk EG kiszámolására, amihez először az EH szakasz hosszát számoljuk ki.
a) Mivel ABCD egy rombusz, ezért az átlói merőlegesek egymásra, vagyis AED∢ = 90◦. Ebből

következik, hogy E rajta van AB Thalész-körén, vagyis HE = HA = HB = AB
2 = 1

2 . Ezzel a feladat
első részével meg is vagyunk.

b) Ezután folytassuk a megoldást, EG kiszámolásával. Tudjuk, hogy BCD∢ = 150◦, amiből
következik, hogy ABC∢ = HBC∢ = 30◦. Viszont azt is tudjuk, hogy egy rombuszban az átló felezi
a csúcsnál lévő szöget, ami esetünkben azt jelenti, hogy az EB egyenes felezi az ABC szöget. Vagyis
ABE∢ = HBE∢ = 15◦. Láttuk viszont már, hogy HB = HE, vagyis BEH egy egyenlőszárú három-
szög, amiből BEH∢ = 15◦. Ebből ki tudjuk számolni a GHE∢ nagyságát, hiszen ez a BEH háromszög
H-beli külső szöge, így GHE∢ = HBE∢ + BEH∢ = 15◦ + 15◦ = 30◦. Tudjuk továbbá, hogy EG
merőleges AB-re, azaz EGH∠ = 90◦, ami azt jelenti, hogy EGH egy szabályos háromszög fele (úgy-

nevezett félszabályos háromszög), vagyis EG = HE
2 =

1
2
2 = 1

4 .
Végül csak az maradt hátra, hogy a Pitagorasz-tételt alkalmazzuk az EGF háromszögre: EG2 +

EF 2 = FG2, amibe behelyettesítve FG =

√(
1
2

)2
+
(
1
4

)2
=

√
1
4 + 1

16 =
√
5
4 hobbitláb.

B

C

D

A

E

F

H
G

150°
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D5. Legyen a0, a1, a2, . . . nemnegatív egész számok egy végtelen hosszú sorozata. Tudjuk, hogy a0 = 0, és létezik olyan
k, hogy ak ̸= k. Továbbá minden n,m nemnegatív egészre teljesül, hogy |an−am| osztja |n−m|-et, vagy pedig an = am.
Mi a lehető legnagyobb szám, ami szerepelhet egy ilyen sorozatban?
Ha minden M egész számra létezik olyan sorozat, amelyben szerepel M-nél nagyobb szám, akkor a válasz végtelen.
Tarján Berci feladata

Megoldás:
Megmutatjuk, hogy 3-nál nagyobb szám nem szerepelhet egy ilyen sorozatban. Jelölje a és b pozitív

számokra a
∣∣∣b azt, hogy a osztja b-t. Először vegyük észre, hogy az |an−am|

∣∣∣|n−m| feltételből |n−m| = 1

esetén következik, hogy an+1 = an + 1 vagy an+1 = an − 1, illetve an = am esetén lehet an+1 = an,
azaz a sorozat egy tagja az előző tagtól mindig legfeljebb 1-gyel tér el. Ha minden n-re an+1 = an + 1
teljesülne, akkor a0 = 0 miatt minden n-re an = n lenne, amit a feladat nem enged meg, így biztosan
lesz egy olyan i, amire ai+1 = ai vagy ai+1 = ai − 1. Belátjuk, hogy bármelyik eset teljesül, a sorozat
legnagyobb tagja nem lehet 3-nál nagyobb.

Vizsgáljuk először azt az esetet, amikor ai+1 = ai, legyen ez az érték x. Megmutatjuk, hogy ekkor
a sorozat minden tagja az [x − 1, x + 1] intervallum egy egész pontja. Legyen aj = y a sorozat egy
tetszőleges tagja, ahol j ≥ i + 2. Ha y = x, akkor valóban az intervallumból való. Tegyük fel, hogy
y ̸= x. Ekkor abból, hogy |aj − ai| osztja |j− i|-t, megkapjuk, hogy |y−x|

∣∣∣j− i. Hasonlóan |aj − ai+1|

osztja |j − (i+1)|-t, azaz |y− x|
∣∣∣j − i− 1. Persze ha egy szám oszt két számot, akkor a különbségüket

is, így megkapjuk, hogy |y − x|
∣∣∣|j − i − (j − i − 1)| = 1, azaz |y − x| osztja 1-et, ami csak úgy lehet,

hogy y−x = 1 vagy y−x = −1, emiatt x−1 ≤ y ≤ x+1, vagyis ai−1 ≤ aj ≤ ai+1 minden j ≥ i+2
esetén. Hasonlóan belátható, hogy j ≤ i− 1 esetén is fennáll ugyanez az egyenlőtlenség. Ebből persze
következik, hogy a sorozat minden tagja az [x− 1, x+ 1] intervallum egy egész pontja, és ezek között
szerepel a 0, így ebben az esetben nem szerepelhet 2-nél nagyobb szám.

Most nézzük meg azt az esetet, amikor van olyan i, amire ai+1 = ai−1. Tekintsük a legkisebb ilyen
i-t. Tudjuk, hogy i ̸= 0, hiszen különben a1 negatív lenne. Itt feltehetjük, hogy ak+1 = ak nem teljesül
semmilyen k-ra, különben alkalmazhatjuk az előző esetet. Vegyük észre, hogy mivel ai az első olyan
index, amire ai+1 ̸= ai + 1, ezért ai−1 + 1 = ai, így ai+1 = ai−1. Legyen aj a sorozat egy tagja, ahol
j ≥ i+ 2. Legyen ai−1 = ai+1 = x és aj = y, és tegyük fel, hogy x ̸= y. Ekkor |aj − ai−1|

∣∣∣j − (i− 1),

azaz |y − x|
∣∣∣j − i+ 1. Hasonlóan |aj − ai+1|

∣∣∣j − (i+ 1), azaz |y − x|
∣∣∣j − i− 1. Ebből az előző esethez

hasonlóan |y − x|
∣∣∣2, ezért |y − x| ≥ 2, azaz x − 2 ≥ aj ≥ x + 2 minden j ≥ i + 2-ra, és hasonlóan

belátható, hogy ugyanez teljesül minden j ≤ i−2-re is. Ebből azt kapjuk, hogy a sorozat minden tagja
az [x− 2, x+ 2] intervallumban van, és ebben a 0-nak is szerepelnie kell, így minden tag legfeljebb 4.
Ez még nem elég, hiszen azt szeretnénk megmutatni, hogy 3-nál nagyobb tag nem lehet. Tegyük fel
indirekten, hogy létezik egy ilyen sorozat, amiben valamilyen i-re ai = 4. Ekkor ai−1 = ai+1 = 3, mert
egyik sem lehet 4-nél nagyobb, és feltettük, hogy semelyik két szomszédos tag nem egyenlő. Ekkor
|ai−1 − a0|

∣∣∣i − 1 és |ai+1 − a0|
∣∣∣i + 1, ezért 3

∣∣∣2, ami persze nem teljesül, ezért az indirekt feltevésünk
helytelen volt, azaz nem lehet 3-nál nagyobb tag a sorozatban.

Már csak mutatnunk kell egy olyan sorozatot, aminek a legnagyobb tagja 3. Legyen a sorozatunk a
következő: ai = i legyen i = 0, . . . , 3 esetén. Ezt követően legyenek a sorozat tagjai felváltva 2 és 3, azaz
ha j > 3, akkor aj = 2, ha j páros és aj = 1, ha j páratlan. Megmutatjuk, hogy ez a sorozat kielégíti
a feladat feltételeit. Nyilván k > 3 esetén ak ̸= k. Még meg kell vizsgálnunk, hogy ha ai ̸= aj , akkor
|ai − aj |

∣∣∣|i − j|. Ezt |ai − aj | = 1 esetén nyilván teljesül. Az az eset, amikor |ai − aj | = 2 csak akkor
fordulhat elő, ha az egyik 0 vagy ha az egyik 3, amik csak egy-egy tagban vétetnek fel, ezekben az
esetekben pedig látható, hogy az indexek paritása épp megfelelő. Az |ai − aj | = 3 eset csak úgy lehet,
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hogy a két szám a 0 és a 3, amik mindketten egy tagban vétetnek fel, és ezek indexének különbsége
pont 3. Az alábbi ábrán látható a sorozat koordinátarendszerben ábrázolva.

i

ai
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D6. Játék: A játékvezető szétoszt egy kör mentén 6 mezőre összesen legfeljebb 30, de páros számú korongot. Két
játékos felváltva lép, egy lépésben a soron következő játékos kiválaszt két szomszédos vagy másodszomszédos mezőt,
melyek egyike sem üres, és elvesz róluk 1-1 korongot. Az a játékos veszít, aki nem tud lépni.

Győzzétek le a szervezőket kétszer egymás után ebben a játékban! Ti dönthetitek el a kezdőállás ismeretében, hogy a
kezdő vagy a második játékos bőrébe szeretnétek bújni.

Megoldás: Vegyük észre, hogy bármelyik két különböző mezőről tudunk elvenni korongot, kivéve két
szemköztiből. Tehát a játéknak csak úgy lehet vége, ha egyáltalán nem marad korong a pályán, vagy
ha csak két szemközti mezőn marad korong. Valamint figyeljük meg azt is, hogy minden lépés után
páros sok korong marad.

Nevezzük nyerő, illetve vesztő állapotnak azokat, amelyekből a soron következő játékos nyerni tud,
illetve nem tud nyerni.

Állítás: Egy állapot akkor és csak akkor vesztő, ha bármelyik két szemközti mezőt vesszük is,
azokon összesen páros sok korong van.

Ez könnyen láthatóan teljesül a végállapotokra (hiszen mint minden állapotban, azokban is páros
sok korong van). Minden lépésben a szemközti mezőpárok három összege közül kettőt csökkentünk
eggyel-eggyel. Ha a fenti állítás szerinti vesztő állapotban vagyunk, akkor bármit is lépünk, egy mezőpáron
páros lesz az összeg, míg a másik két mezőpáron páratlan, így a kapott állásra viszont már nem lesz
igaz az állítás, onnan az ellenfelünk nyerni tud. Ha viszont nyerő állapotban vagyunk, akkor – mivel
az összes korong darabszáma páros, és nem mindhárom összeg páros – az egyik összeg páros lesz, a
másik kettő páratlan. Ekkor a két páratlan összegű mezőpárnak válasszuk ki egy-egy olyan mezőjét,
amin van korong, és ezekről vegyünk el egy-egy korongot. Ez megtehető, hiszen a két kiválasztott mező
különböző mezőpárhoz tartozik, tehát nem lehetnek szemköztiek. Ezzel az ellenfélnek olyan állapotot
hagyunk, melyben mindhárom összeg páros, és így az állításunk szerint ez vesztő állapot.

Így a fenti állítás alapján a kezdőállásnál el tudjuk dönteni, hogy a kezdő vagy a második játékos
bőrébe szeretnénk-e bújni, és a stratégiánk az, hogy minden lépésben mindhárom összeget párosra
állítjuk.
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