
E+1. A function f : Z+ → Z+ is called magical if for every n, the quantity
∑

d|n f(d) is a power of two. Determine the
smallest positive integer k for which there exists a magical function f such that each of the numbers f(1), f(2), . . . , f(2026)
is at most k.
Z+ denotes the set of positive integers. The powers of two are considered to be powers of 2 with nonnegative integer
exponent.
Solution: The smallest such number is 512.
First solution: First we show that it cannot be smaller. Let f+(n) =

∑
d|n f(d).

Then f+(1) < f+(2) < . . . < f+(1024) are different powers of two, so f+(1024) ≥ 1024, and f+(512) ≤ 1
2
f+(1024).

From this f(1024) = f+(1024)− f+(512) ≥ 1
2
f+(1024) ≥ 512.

Now we need a construction for this value. We write n as a product
∏k

i=1 p
αi
i where pi are pairwise different prime

numbers, and αi ∈ Z+ for each 1 ≤ i ≤ k. Using this, let f(n) = 2α1+α2+...+αk−k.
If n ≤ 2026 then α1 + α2 + . . .+ αk ≤ 10 and for n > 1 we have k ≥ 1, therefore f(n) ≤ 512. Now we only need to

show that
∑

d|n f(d) will be a power of two for every n.
We will show this by induction with respect to the number of different prime factors of n.
If n = pα then

∑
d|n f(d) =

∑α
i=0 f(p

i) = 1 +
∑α

i=1 2
i−1 = 2α, which is a power of two.

Now suppose that n has at least two different prime divisors. Then there exist a and b positive integers that are
coprimes, for which ab = n and both a and b have fewer prime factors than n does. (For example using the previous
prime factorization a = pα1

1 , b = n
a

is a good choice.)
Note that if a and b are coprimes then f(ab) = f(a)f(b), furthermore if c | a and d | b then c and d are also

coprimes. Therefore f+(n) =
∑

c|a
∑

d|b f(cd) =
∑

c|a
∑

d|b f(c)f(d) = f+(a)f+(b), because the divisors of n are exactly
the numbers that can be written as a product of a divisor of a and a divisor of b, and these products are pairwise different.

From the induction hypothesis f+(a) and f+(b) are powers of two, thus their product f+(n) is also a power of two.
So we are done with proving the induction step.
Second solution: We prove the lower bound the same way as in Solution 1.

First let us define f+(n) the following way: if n =
∏k

i=1 p
αi
i then f+(n) = 2α1+···+αk .

Here f+(n) is a power of two, so now we need to find a function f that has positive integer values everywhere, and
leads to this f+ function.

Let us use the Mobius inversion formula, which is

f(n) =
∑
d|n

µ(d) f+
(n
d

)
, µ(d) =

0, if ∃ k : k2 | d,

(−1)k, if d equals the product of k different primes.

From this

f(n) =
∑
d|n

µ(d)f+
(n
d

)
=

k∑
i=0

(−1)i
(
k

i

)
2s−i = 2s−k

k∑
i=0

(
k

i

)
(−1)i · 2k−i = 2s−k(2− 1)k = 2s−k,

where s = α1 + . . .+ αk, which is a nonnegative integer, so we are done.
Note: in both solutions, the construction is the same as setting each f(n) to the smallest value where f+(n) is a power

of two, one by one for each n in increasing order.
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E+2. Sauron erased some, possibly infinitely many lattice points from the infinite unit square lattice such that the
Euclidean distance between any two erased points is at least d, where d is a fixed positive number. Gandalf wants to
visit all the remaining points along the lattice lines. In each step, he can only move to an adjacent remaining point, and
he visits each of them exactly once. They noticed that no matter where Gandalf starts, he cannot visit all the remaining
lattice points in this way. Determine all the possible values of d for which this can happen.
Two remaining lattice points are adjacent if their distance is 1.
Solution: It is possible for all values of d.

For each even d, we will construct a set of lattice points such that the minimal distance between its points is d, but
if Sauron erases this set, Gandalf can’t traverse all the remaining points.

Let Sauron erase point (a, b) if and only if d|a and d|b.
Color the lattice black and white like a chessboard. Since d is even, all the erased points have the same colour.
Assume towards contradiction that Gandalf can traverse the remaining points.
Let a segment of Gandalf’s path be a set of lattice points which were visited consecutively during the walk. On each

segment, the squares are alternately white and black, so the difference of their number is at most 1.
Consider a dn×dn grid for arbitrary n ∈ Z+, which doesn’t contain Gandalf’s starting point. The intersection of this

square with Gandalf’s path is a disjoint union of segments, whose endpoints lie on the boundary of the square, so there
are at most 2(dn− 1) such segments. This means that the total difference of the number of black and white non-erased
points in this square is at most 2(dn− 1).

On the whole square this difference is at most 1, and on the erased points it is exactly n2, so n2 − 1 ≤ 2(dn− 1).
If n is large enough, n2 − 1 > 2dn− 2, which is a contradiction, so Gandalf cannot visit all the remaining points.
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E+3. Let H be the orthocentre of triangle ABC, and let M be the midpoint of BC. Let D be a point on the line BC
such that DH ⊥ AM , and let E be the reflection of M with respect to B. Assume that the circle with diameter BE and
the circumcircle of triangle AHD intersect at two points, let them be X and Y . Prove that X, Y and M are collinear.
Solution: Let ω be BC’s Thales circle, thus M will be the its midpoint. Futhermore the points T and R lie on ω, which
are the feet of the altitudes from B and C. Let D′ be the intersection of the lines TR and BC, we will show now that
D′ is in fact D. Drawing the lines of sides and diagonals in the cyclic quadrilateral BCTR, the intersections will be A,
H and D′. Thus A’s polar respect to ω is D′H, this yields that it is perpendicular to AM . This means that D′ = D.
Similarily the polar of D with respect to ω is AH, therefore M is the orthocenter of triangle ADH. Now let M ′ be the
reflection of M onto AH. Then M ′ lies on the circle ADH since the reflection of a triangle’s orthocenter onto its side
will be on the circumcircle of the triangle. Let P be the foot of the altitude AH. Now (BCDP ) = −1, thus the powers
from M to the circles yields

MP ·MD = MB ·MC

Multiplying both sides by 2, we have
MM ′ ·MD = ME ·MC

Thus the power of M to the circles AHDM ′ and BC’s Thales circle are the same, So M ′ is on the radical axis of the
circles, therefore it is on the line XY .
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E+4. We label the vertices of a graph in the following manner: to each vertex, we assign a positive integer not larger
than its degree. We say that a simple, connected graph is beautiful if for every such labeling, there exists a walk in the
graph whose endpoints may be arbitrary, and which visits each vertex exactly as many times as its label. What is the
minimum number of edges a beautiful graph with n > 1 vertices can have?
During a walk in a graph, we may visit vertices and edges multiple times.
Solution: Such a graph has at least

e(n) =

{
k(k − 1) + 1 if n = 2k

k2 + 1 if n = 2k + 1

edges.
We will first show that this can be achieved. Note that e(n) is the number of edges in a graph with n vertices where

the edges are split as evenly as possible between two classes, which each form a clique, and the two cliques are connected
by a single edge. We will show that in general, if we connect a clique with n + 1 vertices and one with m + 1 vertices
with a single edge, the resulting graph will be nice.

Let A = {a0, a1, . . . , an} and B = {b0, b1, . . . , bm}, where the subgraphs spanned by A, and B are complete, and there
is an edge between a0 and b0. Let the degree of vertex x be d(x), let the value written on this vertex be 1 ≤ f(x) ≤ d(x).

First create a list containing the values ai for 1 ≤ i ≤ n, each exactly f(ai) times, such that two adjacent vertices
are not the same. To do this, choose the i for which f(ai) is maximal and write ai exactly f(ai) times. Then insert the
values aj for i ̸= j in any order, each at most f(aj) times, resulting in a list with alternating values of ai and other
vertices.

This is possible because f(ai) ≤ d(ai) = n, f(aj) ≥ 1, and because there are exactly n−1 indices j such that i ̸= j, so
for example we could use every such index one time. If there are any aj values left which we did not use f(aj) times, then
we insert these in an arbitrary order between two values that are not aj . This can be done because the length of the list
is at least 2(f(aj)− 1), so vertices can be inserted in at least 2(f(ai)) positions, and at most 2(f(aj)− 1) ≤ 2(f(ai)− 1)
positions can’t be inserted into.

Now insert a0 exactly f(a0) times either at the end of the list or between numbers in the list without inserting between
two neighbouring numbers twice. This is possible because the list is at least n elements long and f(a0) ≤ d(a0) = n+ 1.
Create the list for the B graph in a similar manner such that it’s first element is b0. Finally concatenate the two lists,
resulting in a walk in G that satisfies the conditions.

Now we move on to the proof of the lower bound. Note that if we write d(ai) on a vertex, and 1 on all of its
neighbours, then this vertex has to be one of the endpoints of a good walk, because otherwise the occurences of ai in
the walk together have at least d(ai) + 1 neighbours, which are all the neighbours of ai. But there is only d(ai) of them,
and each can occur only 1 time in the walk, which is a contradiction.

Now if we have three independent vertices, and we write their degree on them, and 1 on all the other vertices, then
any good walk should have all three as endpoints, which is impossible, so the graph cannot be beutiful.

From Turán’s (or Mantel’s) theorem, the complement of the graph has minimum number of edges if and only if it is
the complete bipartite graph on ⌊n

2
⌋ and ⌈n

2
⌉ points. Since our graph has to be connected, our construction is optimal.
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E+5. Let P (x) be a polynomial with nonnegative real coefficients, and P (0) = 0. S uppose that if 0 ≤ x ≤ 1, then
P (−2025x) ≥ −2025P (x). Let x1, . . . , x2026 be real numbers whose sum is nonnegative, and assume that −2025 ≤ xi ≤ 1
holds for all xi. Prove that

P
(x1 + . . .+ x2026

2026

)
≤ P (x1) + . . .+ P (x2026)

2026
.

Solution: Suppose that numbers x1, x2, . . . , xk are negative, and xk+1, xk+2, . . . , x2026 are non-negative. If all the num-
bers are non-negative, let k = 0.

For all 1 ≤ i ≤ k, −2025 ≤ xi < 0, so 0 < − xi
2025

≤ 1. Let yi = − xi
2025

. Using the given inequality for y1, . . . , yk, we
get P (xi) ≥ −2025P (yi). Summing this for all yi gives

P (x1) + P (x2) + . . .+ P (xk) ≥ −2025 (P (y1) + P (y2) + . . .+ P (yk))

Note that
P (y1) + P (y2) + . . .+ P (yk) ≤ P (y1 + y2 + . . .+ yk),

because the terms on the right side are those on the left side, plus a number of other terms with non-negative coefficients,
and all yi are non-negative. From this, we get

P (x1) + . . .+ P (x2026) ≥ −2025((P (y1) + . . .+ P (yk)) + P (xk+1) + . . .+ P (x2026) ≥

≥ −2025P (y1 + y2 + . . .+ yk)+(k − 1)P (0) + P (xk+1) + . . .+ P (x2026)

using that P (0) = 0.
Note that P (x) is convex on R+, because its second derivative is a polynomial with non-negative coefficients, so it is

non-negative on R+. Therefore by using Jensen’s inequality

(k − 1)P (0) + P (xk+1) + P (xk+2) + . . .+ P (x2026) ≥ 2025P
(xk+1 + xk+2 + . . .+ x2026

2025

)
.

Now let X =
xk+1+xk+2+...+x2026

2025
and Y = y1 + y2 + . . .+ yk. Then we only need to show that

2025P (X)− 2025P (Y )

2026
≥ P

(
2025X − 2025Y

2026

)
,

since 2025X − 2025Y = x1 + x2 + . . .+ x2026. For this we first need that

2025P (X)− 2025P (Y )

2026
≥ 2025

2026
P (X − Y ),

since P (X −Y )+P (Y ) ≤ P (X), and we have shown before that P (a)+P (b) ≤ P (a+ b) holds for any positive numbers
a, b. Furthermore

2025

2026
P (X − Y ) ≥ P

(
2025

2026
(X − Y )

)
,

since by writing both sides as a polynomial of X − Y ≥ 0, on the left side each coefficient is multiplied by 2025
2026

, while
on the right side the coeffcient of xi is multiplied by

(
2025
2026

)i, which is less than equal to 2025
2026

for all i ≥ 1. But since we
know that P (0) = 0, the constant term of P is zero, therefore each term is larger on the left hand side than on the right,
and this is enough. By combining the last two inequalities, we arrive to the problem’s statement.
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E+6. Game: At the start of the game, there are eight positive integers on the first level, and a positive integer k is
given, which is at most the sum of the eight numbers. The players take turns alternately, and in each turn, the current
player erases two numbers from the same level, and writes their sum to the next level. The winner is the player who
writes a number greater than or equal to k first.
Defeat the organisers twice in a row in this game! First, the organisers determine the eight numbers and k, then you get
to choose whether you want to play as the first or the second player.
Solution: Let the numbers on the first level be a1 ≥ a2 ≥ · · · ≥ a8. On the second, third and fourth level, let the
numbers in the order they are written be b1, b2, b3, b4, c1, c2 and d.

We state that the second player has a winning strategy if and only if a1 +a2 +a7 +a8 < k and a3 +a4 +a5 +a6 ≥ k.
Assume that one of these conditions is not satisfied. We will show that the first player has a winning strategy.
The first player should write b1 = a1 + a2 as his first move. If he does not win by this, then the second player

writes the number b2 ≥ a7 + a8. He cannot win by doing this, as b2 ≤ b1. In the next move, the first player should
write c1 = b1 + b2 ≥ a1 + a2 + a7 + a8. If it is at least k, then the first player wins. If it is less than k, then by
the assumption, we know that a3 + a4 + a5 + a6 < k. During the next three moves, the largest number obtainable is
c2 = b3 + b4 ≤ a3 + a4 + a5 + a6 < k, so the first player indeed wins with d = c1 + c2 ≥ k.

Now we will show that the second player wins if both the above conditions hold. As a1 + a2 < k, we know that one
can only win with the numbers c1, c2 or d.

Let the first player write b1, then the second player should write the smallest b2 possible. Now the first player can
either write c1 = b1+b2 ≤ a1+a2+a7+a8 < k or a b3. If he writes b3, then the second player should write c1 = b1+b2 < k
and vica versa. So the next number which can win is c2. We can see that c2 will be written down in the sixth move,
so the second player writes it. As it does not contain neither a7 or a8 (as they are already in b1 or b2), we know that
c2 = b3 + b4 ≥ a3 + a4 + a5 + a6 ≥ k, so the second player indeed wins.
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