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E+1. A function f: ZT — Z7% is called magical if for every n, the quantity Zdln f(d) is a power of two. Determine the
smallest positive integer k for which there exists a magical function f such that each of the numbers f(1), f(2), ..., f(2026)
is at most k.

7t denotes the set of positive integers. The powers of two are considered to be powers of 2 with nonnegative integer
exponent.

Solution: The smallest such number is 512.

First solution: First we show that it cannot be smaller. Let f*(n) = > f(d).

Then f*(1) < f1(2) < ... < f7(1024) are different powers of two, so f*(1024) > 1024, and f*(512) < 1 f*(1024).
From this f(1024) = f7(1024) — f*(512) > % f*(1024) > 512.

Now we need a construction for this value. We write n as a product Hle p;* where p; are pairwise different prime
numbers, and o; € ZT for each 1 < i < k. Using this, let f(n) = 2orHeztFar—k

If n <2026 then a1 + a2 + ...+ ax < 10 and for n > 1 we have k > 1, therefore f(n) < 512. Now we only need to
show that °,, f(d) will be a power of two for every n.

We will show this by induction with respect to the number of different prime factors of n.

If n=p® then >°, . f(d) =327, f(p) =143, 271 = 2% which is a power of two.

Now suppose that n has at least two different prime divisors. Then there exist a and b positive integers that are
coprimes, for which ab = n and both a and b have fewer prime factors than n does. (For example using the previous
prime factorization a = pi™*, b = 2 is a good choice.)

Note that if @ and b are coprimes then f(ab) = f(a)f(b), furthermore if ¢ | a and d | b then ¢ and d are also
coprimes. Therefore fT(n) = Deta 2ap Fled) =320, X ap o) f(d) = T (a)fT(b), because the divisors of n are exactly
the numbers that can be written as a product of a divisor of a and a divisor of b, and these products are pairwise different.

From the induction hypothesis f*(a) and f*(b) are powers of two, thus their product f*(n) is also a power of two.
So we are done with proving the induction step.

Second solution: We prove the lower bound the same way as in Solution 1.

First let us define f*(n) the following way: if n = []F_, p* then f¥(n) = 201+ +ok,

Here f*(n) is a power of two, so now we need to find a function f that has positive integer values everywhere, and
leads to this fT function.

Let us use the Mobius inversion formula, which is

n 0, if 3k k2| d,
fo) =Y (5),  w@= |
d|n

(=1)*, if d equals the product of k different primes.

From this

fo) =Y u@f* (5) =1 ('“) 27 =27y (’“) (-1 -2 =22 b =207,
1=0

dln i=

where s = a1 + ... 4+ ax, which is a nonnegative integer, so we are done.
Note: in both solutions, the construction is the same as setting each f(n) to the smallest value where f*(n) is a power
of two, one by one for each n in increasing order.
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E+2. Sauron erased some, possibly infinitely many lattice points from the infinite unit square lattice such that the
Euclidean distance between any two erased points is at least d, where d is a fixed positive number. Gandalf wants to
visit all the remaining points along the lattice lines. In each step, he can only move to an adjacent remaining point, and
he visits each of them exactly once. They noticed that no matter where Gandalf starts, he cannot visit all the remaining
lattice points in this way. Determine all the possible values of d for which this can happen.

Two remaining lattice points are adjacent if their distance is 1.

Solution: It is possible for all values of d.

For each even d, we will construct a set of lattice points such that the minimal distance between its points is d, but
if Sauron erases this set, Gandalf can’t traverse all the remaining points.

Let Sauron erase point (a,b) if and only if d|a and d|b.

Color the lattice black and white like a chessboard. Since d is even, all the erased points have the same colour.

Assume towards contradiction that Gandalf can traverse the remaining points.

Let a segment of Gandalf’s path be a set of lattice points which were visited consecutively during the walk. On each
segment, the squares are alternately white and black, so the difference of their number is at most 1.

Consider a dn x dn grid for arbitrary n € Z*, which doesn’t contain Gandalf’s starting point. The intersection of this
square with Gandalf’s path is a disjoint union of segments, whose endpoints lie on the boundary of the square, so there
are at most 2(dn — 1) such segments. This means that the total difference of the number of black and white non-erased
points in this square is at most 2(dn — 1).

On the whole square this difference is at most 1, and on the erased points it is exactly n?, so n* — 1 < 2(dn — 1).

If n is large enough, n? — 1 > 2dn — 2, which is a contradiction, so Gandalf cannot visit all the remaining points.
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E-+3. Let H be the orthocentre of triangle ABC, and let M be the midpoint of BC. Let D be a point on the line BC
such that DH | AM, and let E be the reflection of M with respect to B. Assume that the circle with diameter BE and
the circumcircle of triangle AH D intersect at two points, let them be X and Y. Prove that X, Y and M are collinear.

Solution: Let w be BC’s Thales circle, thus M will be the its midpoint. Futhermore the points 7" and R lie on w, which
are the feet of the altitudes from B and C. Let D’ be the intersection of the lines TR and BC, we will show now that
D’ is in fact D. Drawing the lines of sides and diagonals in the cyclic quadrilateral BCTR, the intersections will be A,
H and D’. Thus A’s polar respect to w is D’H, this yields that it is perpendicular to AM. This means that D’ = D.
Similarily the polar of D with respect to w is AH, therefore M is the orthocenter of triangle ADH. Now let M’ be the
reflection of M onto AH. Then M’ lies on the circle ADH since the reflection of a triangle’s orthocenter onto its side
will be on the circumcircle of the triangle. Let P be the foot of the altitude AH. Now (BCDP) = —1, thus the powers
from M to the circles yields
MP-MD=MB-MC

Multiplying both sides by 2, we have
MM'-MD=ME-MC

Thus the power of M to the circles AHDM' and BC’s Thales circle are the same, So M’ is on the radical axis of the
circles, therefore it is on the line XY
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E-+4. We label the vertices of a graph in the following manner: to each vertex, we assign a positive integer not larger
than its degree. We say that a simple, connected graph is beautiful if for every such labeling, there exists a walk in the
graph whose endpoints may be arbitrary, and which visits each vertex exactly as many times as its label. What is the
minimum number of edges a beautiful graph with n > 1 vertices can have?

During a walk in a graph, we may visit vertices and edges multiple times.

Solution: Such a graph has at least

k(k—1)+1  ifn=2k
e(n) =1, .
k41 ifn=2k+1

edges.

We will first show that this can be achieved. Note that e(n) is the number of edges in a graph with n vertices where
the edges are split as evenly as possible between two classes, which each form a clique, and the two cliques are connected
by a single edge. We will show that in general, if we connect a clique with n 4 1 vertices and one with m + 1 vertices
with a single edge, the resulting graph will be nice.

Let A ={ao,a1,...,an} and B = {bo, b1, ...,bm}, where the subgraphs spanned by A, and B are complete, and there
is an edge between ap and bo. Let the degree of vertex = be d(z), let the value written on this vertex be 1 < f(z) < d(z).

First create a list containing the values a; for 1 < i < n, each exactly f(a;) times, such that two adjacent vertices
are not the same. To do this, choose the ¢ for which f(a;) is maximal and write a; exactly f(a;) times. Then insert the
values a; for ¢ # j in any order, each at most f(a;) times, resulting in a list with alternating values of a; and other
vertices.

This is possible because f(a:) < d(a:) = n, f(a;) > 1, and because there are exactly n—1 indices j such that ¢ # j, so
for example we could use every such index one time. If there are any a; values left which we did not use f(a;) times, then
we insert these in an arbitrary order between two values that are not a;. This can be done because the length of the list
is at least 2(f(a;) — 1), so vertices can be inserted in at least 2(f(a;)) positions, and at most 2(f(a;) —1) < 2(f(a:;) —1)
positions can’t be inserted into.

Now insert ao exactly f(ao) times either at the end of the list or between numbers in the list without inserting between
two neighbouring numbers twice. This is possible because the list is at least n elements long and f(ao) < d(ao) =n+ 1.
Create the list for the B graph in a similar manner such that it’s first element is by. Finally concatenate the two lists,
resulting in a walk in G that satisfies the conditions.

Now we move on to the proof of the lower bound. Note that if we write d(a;) on a vertex, and 1 on all of its
neighbours, then this vertex has to be one of the endpoints of a good walk, because otherwise the occurences of a; in
the walk together have at least d(a;) + 1 neighbours, which are all the neighbours of a;. But there is only d(a;) of them,
and each can occur only 1 time in the walk, which is a contradiction.

Now if we have three independent vertices, and we write their degree on them, and 1 on all the other vertices, then
any good walk should have all three as endpoints, which is impossible, so the graph cannot be beutiful.

From Turan’s (or Mantel’s) theorem, the complement of the graph has minimum number of edges if and only if it is
the complete bipartite graph on |5 | and [ %] points. Since our graph has to be connected, our construction is optimal.
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E+5. Let P(z) be a polynomial with nonnegative real coefficients, and P(0) = 0. S uppose that if 0 < z < 1, then
P(—2025z) > —2025P(x). Let z1,. .., x2026 be real numbers whose sum is nonnegative, and assume that —2025 < z; <1
holds for all z;. Prove that

P($1+...+x2026>§P(x1)+~.~+P(x2026)

2026 2026
Solution: Suppose that numbers x1,z2, ...,z are negative, and Tky1, Trpt2,.- ., T2026 are non-negative. If all the num-
bers are non-negative, let k = 0.
Forall 1 <i <k, —2025 < x; < 0,50 0 < —555= < 1. Let y; = —55iz. Using the given inequality for y1, ..., yx, we

get P(x;) > —2025P(y;). Summing this for all y; gives
P(xl)-l-P(:L‘Q)—f—-i-P(l'k) > —2025(P(y1)+P(y2)+..,+P(yk))
Note that
P(y1) + P(y2) + ...+ P(yx) < P(y1 +y2 + ... + yx),
because the terms on the right side are those on the left side, plus a number of other terms with non-negative coefficients,
and all y; are non-negative. From this, we get

using that P(0) = 0.
Note that P(z) is convex on RT, because its second derivative is a polynomial with non-negative coefficients, so it is
non-negative on RT. Therefore by using Jensen’s inequality

(k= 1)P(0) + P(a41) + P(ers2) + .. + Plwaoas) > 2025P (241 Rl I ).

2025

Now let X = x’“+1+w’“;022-g“'+x2°26 and Y =y +y2 + ...+ yx. Then we only need to show that

2025P(X) — 2025P(Y) > p 2025X — 2025Y
2026 - 2026 ’
since 2025X — 2025Y = x1 + 22 + ... + T2026. For this we first need that

2025P(X) — 2025P(Y) _ 2025
2026 = 2026

since P(X —Y)+ P(Y) < P(X), and we have shown before that P(a)+ P(b) < P(a + b) holds for any positive numbers

a, b. Furthermore
2025P(X _y)>p (2025()( _ Y)),

P(X -Y),

2026 2026
since by writing both sides as a polynomial of X —Y > 0, on the left side each coefficient is multiplied by %, while
on the right side the coeffcient of z* is multiplied by (%)l, which is less than equal to % for all 4 > 1. But since we

know that P(0) = 0, the constant term of P is zero, therefore each term is larger on the left hand side than on the right,
and this is enough. By combining the last two inequalities, we arrive to the problem’s statement.
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E-+6. Game: At the start of the game, there are eight positive integers on the first level, and a positive integer k is
given, which is at most the sum of the eight numbers. The players take turns alternately, and in each turn, the current
player erases two numbers from the same level, and writes their sum to the next level. The winner is the player who
writes a number greater than or equal to k first.

Defeat the organisers twice in a row in this game! First, the organisers determine the eight numbers and k, then you get
to choose whether you want to play as the first or the second player.

Solution: Let the numbers on the first level be a1 > a2 > --- > as. On the second, third and fourth level, let the
numbers in the order they are written be b1, ba, b3, b4, c1, c2 and d.

We state that the second player has a winning strategy if and only if a1 + a2 + a7 +as < k and as + a4 +as +as > k.

Assume that one of these conditions is not satisfied. We will show that the first player has a winning strategy.

The first player should write by = a1 + a2 as his first move. If he does not win by this, then the second player
writes the number b2 > a7 + as. He cannot win by doing this, as b2 < b;. In the next move, the first player should
write ¢1 = b1 + b2 > a1 + a2 + ar + as. If it is at least k, then the first player wins. If it is less than k, then by
the assumption, we know that as 4+ a4 4+ a5 + as < k. During the next three moves, the largest number obtainable is
ca =bs+bs <as+as+as+ as < k, so the first player indeed wins with d = ¢1 + c2 > k.

Now we will show that the second player wins if both the above conditions hold. As a1 + a2 < k, we know that one
can only win with the numbers ci1, c2 or d.

Let the first player write b1, then the second player should write the smallest by possible. Now the first player can
either write ¢c; = b1 +b2 < a1+az2+ar+as < k or a bs. If he writes b3, then the second player should write ¢c1 = b1 +b2 < k
and vica versa. So the next number which can win is ca. We can see that c2 will be written down in the sixth move,
so the second player writes it. As it does not contain neither ar or as (as they are already in b1 or b2), we know that
c2 = bs +bs > az + as + as + ag > k, so the second player indeed wins.



