
E+1. Egy f : Z+ → Z+ függvényt varázslatosnak nevezünk, ha minden n-re
∑

d|n f(d) kettőhatvány. Határozzátok
meg a legkisebb olyan k pozitív egészet, amelyre létezik olyan f varázslatos függvény, hogy az f(1), f(2), . . . , f(2026)
számok mindegyike legfeljebb k.
A Z+ a pozitív egész számok halmazát jelöli. Azon számokat tekintjük kettőhatványoknak, amik a 2 nemnegatív egész
kitevős hatványai.
Varga Boldizsár feladata

Megoldás: A legkisebb ilyen szám az 512.
1. megoldás:

Először megmutatjuk, hogy ennél kevesebb nem lehet. Legyen f+(n) =
∑

d|n f(d).
Ekkor f+(1) < f+(2) < . . . < f+(1024) különböző kettőhatványok, tehát f+(1024) ≥ 1024, és

f+(512) ≤ 1
2f

+(1024). Ebből f(1024) = f+(1024)− f+(512) ≥ 1
2f

+(1024) ≥ 512.
Már csak adnunk kell egy konstrukciót, amire ez lesz a válasz. Írjuk fel n-et

∏k
i=1 p

αi
i alakban, ahol

a pi-k páronként különböző prímszámok, valamint αi ∈ Z+ minden 1 ≤ i ≤ k-ra. Ezt használva legyen
f(n) = 2α1+α2+...+αk−k.

Ha n ≤ 2026, akkor α1 + α2 + . . . + αk ≤ 10, és n > 1-re k ≥ 1, tehát f(n) ≤ 512. Így már csak
azt kell belátni, hogy

∑
d|n f(d) kettőhatvány lesz minden n-re.

Ezt n különböző prímtényezőinek számára vonatkozó indukcióval bizonyítjuk. Ha n = pα, akkor∑
d|n f(d) =

∑α
i=0 f(p

i) = 1 +
∑α

i=1 2
i−1 = 2α, ami kettőhatvány.

Most tegyük fel, hogy n-nek van legalább két különböző prímosztója. Ekkor léteznek egymáshoz
relatív prím a és b pozitív egészek, melyekre ab = n, és a-nak és b-nek is kevesebb prímosztója van,
mint n-nek. (Például a fenti prímtényezős felbontást használva a = pα1

1 , b = n
a jó választás.)

Vegyük észre, hogy ha a és b relatív prímek, akkor f(ab) = f(a)f(b), valamint ha c | a és d | b,
akkor c és d is relatív prímek. Ebből f+(n) =

∑
c|a

∑
d|b f(cd) =

∑
c|a

∑
d|b f(c)f(d) = f+(a)f+(b),

hiszen n osztói pontosan azok a számok, amik előállnak a és b egy-egy osztójának a szorzataként, és
ezek a szorzatok mind különbözők.

Az indukció szerint f+(a) és f+(b) is kettőhatvány, tehát a szorzatuk, f+(n) is az, így kész vagyunk.
2. megoldás:

Az alsó becslést az első megoldás szerint csináljuk.
A felső becsléshez először definiáljuk f+(n)-t a következőképpen: ha n =

∏k
i=1 p

αi
i , akkor f+(n) =

2α1+···+αk .
Erre igaz, hogy f+(n) kettőhatvány, tehát csak az kell, hogy van olyan f függvény, ami mindenhol

egy pozitív egész, és ezt az f+-t adja.
Ehhez használjuk a Möbius-féle inverziós képletet, ami szerint

f(n) =
∑
d|n

µ(d) f+
(n
d

)
, µ(d) =

0, ha ∃ k : k2 | d,

(−1)k, ha d egyenlő k különböző prím szorzatával.

Ebből

f(n) =
∑
d|n

µ(d)f+
(n
d

)
=

k∑
i=0

(−1)i
(
k

i

)
2s−i = 2s−k

k∑
i=0

(
k

i

)
(−1)i · 2k−i = 2s−k(2− 1)k = 2s−k,

ahol s = α1 + . . .+ αk, ami egy nemnegatív egész, tehát kész vagyunk.
Megjegyzés: mindkét megoldásban kapott konstrukció ugyanaz, mint az, amit úgy kapunk, hogy min-

den n-re növekvő sorrendben f(n)-t beállítjuk a legkisebb olyan értékre, amire f+(n) kettőhatvány.
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E+2. Sauron a végtelen egységnégyzetrácsból kitörölt néhány, akár végtelen sok rácspontot úgy, hogy bármely két
kitörölt pont euklideszi távolsága legalább d, ahol d egy rögzített pozitív szám. Ezután Gandalf be szeretné járni a meg-
maradt rácspontokat a rácsvonalak mentén úgy, hogy mindig csak szomszédos megmaradt rácspontra lép és mindegyiken
pontosan egyszer jár. Észrevették, hogy Gandalf akárhonnan is indulna, nem tudja a kívánt módon bejárni a megmaradt
rácspontokat. Határozzátok meg d összes lehetséges értékét, amelyre ez teljesülhet.
Két megmaradt rácspont akkor szomszédos, ha a távolságuk 1.
Tarján Berci és Varga Boldi feladata

Megoldás: Belátjuk, hogy d tetszőleges lehet.
Minden páros d távolságra konstruálunk egy olyan rácsponthalmazt, amelyre igaz, hogy bármely

két rácspont távolsága legalább d, de a megmaradó rácspontokat Gandalf nem tudja bejárni a kívánt
módon.

Zárja ki Sauron azokat az (a, b) rácspontokat, melyekre d|a és d|b.
Színezzük ki sakktáblaszerűen a négyzetrácsot fekete-fehérre. Mivel d páros, az összes kizárt pont

egyszínű.
Tegyük fel indirekten, hogy Gandalf be tudja járni a megmaradt rácspontokat.
A bejárás egy szakasza alatt olyan rácspontokat értünk, melyeket Gandalf egymás után járt be.

Minden szakaszon a fehér és fekete mezők felváltva vannak, tehát a számuk különbsége legfeljebb 1.
Tekintsünk tetszőleges n ∈ Z+-ra egy dn × dn-es négyzetet, amiben nincs benne Gandalf kiin-

dulópontja. Ebben a bejárt mezők Gandalf útján néhány diszjunkt szakaszra bomlanak, amiknek a
két-két végpontja a négyzet oldalain van, tehát legfeljebb 2(dn−1) ilyen szakasz van. Ebből a négyzeten
belül lévő megmaradt pontokon a fekete és fehér mezők számának különbsége legfeljebb 2(dn− 1).

A négyzet összes pontján ez a különbség legfeljebb 1, a kizárt pontokon pedig n2, tehát 2(dn−1) ≥
n2 − 1.

Elég nagy n-re azonban n2 − 1 > 2dn − 2, ami ellentmondás, tehát Gandalf valóban nem tudja
bejárni a megmaradt pontokat.
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E+3. Az ABC háromszög magasságpontja legyen H, a BC oldal felezőpontja M . Legyen D olyan pont a BC
egyenesen, amelyre DH ⊥ AM , valamint M tükörképe B-re legyen E. Továbbá tegyük fel, hogy BE Thalész-körének és
AHD köréírt körének létezik két metszéspontja, legyenek ezek X és Y . Bizonyítsátok be, hogy X, Y és M egy egyenesre
esnek.
Molnár-Szabó Vilmos feladata

Megoldás: Legyen ω a BC szakasz Thalész-köre, ennek M a középpontja és rajta van T és R, amik
rendre a B-ből és C-ből induló magasságok talppontjai. Legyen TR és BC metszéspontja D′, erről
belátjuk, hogy D-vel megegyezik. A BCTR húrnégyszögben 3-féleképpen lehet átlók metszéspontját
venni, ezek A, H és D′, tehát a Brocard-tétel szerint A polárisa ω-ra nézve D′H, ami így merőleges
AM -re, és hasonlóan D′ polárisa AH. Mivel D′H ⊥ AM és DH ⊥ AM , így D′ = D. Másrészt
AH ⊥ DM és DH ⊥ AM , tehát M az AHD háromszög magasságpontja. Így M tükörképe az AH
egyenesre az nem más mint BC egyenes és az AHD második metszéspontja (vagy D, ha érinti BC-t),
legyen ez a pont M ′, az AH magasság talppontja P .

D polárisa ω-ra AP , tehát D inverze ω-ra P , így

MP ·MD = MB2

Megszorozva mindkét oldalt kettővel

MM ′ ·MD = ME ·MB

azaz az M ′-nek ugyanaz az (AHDM ′) körre és BE Thalész-körére vonatkozó hatványa, tehát M rajta
van a hatványvonalukon, ami az XY egyenes.
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E+4. Egy gráf csúcsait megszámozzuk a következőképpen: minden csúcsra egy olyan pozitív egészet írunk, ami
legfeljebb a csúcs fokszáma. Egy véges, egyszerű, összefüggő gráfot szépnek nevezünk, ha minden ilyen számozás mellett
létezik a gráfban olyan séta, amelynek a kezdő- és végpontja tetszőleges, valamint minden csúcsban pontosan annyiszor
jár, mint a csúcson lévő szám. Legkevesebb hány éle lehet egy n > 1 csúcsú szép gráfnak?
Egy gráfséta során a csúcsokat és az éleket többször is érinthetjük.
Németh Marci feladata

Megoldás: Egy ilyen gráfnak legkevesebb

e(n) =

{
k(k − 1) + 1 ha n = 2k

k2 + 1 ha n = 2k + 1

éle lehet.
Először megmutatjuk, hogy ez elérhető. Látható, hogy e(n) éppen az élek száma abban az n csúcs

gráfban, melyben a csúcsok két minél egyenlőbb osztályba vannak osztva, melyek osztályon belül egy
teljes klikket alkotnak, és a két klikk össze van kötve egy éllel. Általánosabban igazoljuk, hogy ha egy
n+ 1 és egy m+ 1 csúcsú klikket összekötünk egy éllel, a kapott G = A ∪B gráf szép lesz.

Legyenek a csúcsok A = {a0, a1, . . . , an} és B = {b0, b1, . . . , bm}, ahol az A, illetve B által feszített
részgráfok teljesek, valamint van még egy él a0 és b0 között. Legyen az x csúcs fokszáma d(x), a ráírt
érték 1 ≤ f(x) ≤ d(x).

Először készítünk egy listát, melyben az ai (1 ≤ i ≤ n) értékek szerepelnek, mindegyik pontosan
f(ai)-szer, és két szomszédos csúcs nem ugyanaz. Ehhez válasszuk ki azt az i-t, melyre f(ai) maximális,
és írjuk le ai-t f(ai)-szer egymás után. Most tetszőleges sorrendben szúrjunk közbe aj (i ̸= j) értékeket,
aj-t legfeljebb f(aj)-szer, hogy egy olyan listát kapjunk, melyben felváltva jön ai és más csúcs.

Ezt meg lehet tenni, hiszen f(ai) ≤ d(ai) = n és f(aj) ≥ 1, illetve éppen n− 1 darab j index van,
melyre i ̸= j, tehát például használhatjuk az összes ilyen indexet egyszer. Ha maradt aj érték, melyet
nem használtunk f(aj)-szer, akkor ezeket tetszőleges sorrendben szúrjuk be két olyan érték közé, amik
közül egyik sem aj . Ezt meg lehet tenni: a listánk legalább 2f(ai)− 1 hosszú, tehát 2f(ai) helyre lehet
beszúrni, és egy lépésben legfeljebb 2(f(aj)−1) ≤ 2(f(ai)−1) helyre nem lehet beszúrni, tehát készen
vagyunk.

Most szúrjuk be a0-t f(a0)-szor az elkészült lista végére, illetve a listában szereplő számok közé
úgy, hogy semelyik két szomszédos szám közé nem szúrjuk be kétszer. Ezt meg lehet tenni, hiszen a
lista hossza legalább n, és f(a0) ≤ d(a0) = n+1. Szimmetrikusan készítsük el ezt a listát a B gráfra is,
úgy, hogy az b0-lal kezdődjön. Végül írjuk egymás után a két listát. Ez egy, a feltételeknek megfelelő
séta lesz G csúcsain.

Most rátérünk az alsó korlát bizonyítására.
Vegyük észre, hogy ha egy csúcsra a fokszáma van írva, és minden szomszédjára 1, akkor az csak

úgy lehet, ha a séta egyik végpontja. Ugyanis ha nem végpont lenne, akkor minden alkalommal, mikor
a csúcsra lépünk, előző lépésben az egyik szomszédján voltunk, és ezenkívül még az egyik szomszédján
jártunk az utolsó érintése utáni lépésben is, tehát összesen legalább eggyel többször, mint a foka.
Viszont a szomszédain összesen annyiszor jártunk, mint ami a foka, ez ellentmondás. Ebből látszik,
hogy G-ben nincs 3 nagyságú független ponthalmaz, mert akkor ezekre a fokszámukat, minden másra
1-et írva azt kapnánk, hogy ezek mind végpontjai a sétának, ami ellentmondás.

Így a Turán (vagy Mantel) tétel komplementere miatt legalább annyi éle van, mint annak a gráfnak,
melyben két, nagyjából egyenlő nagyságú klikk van, és az optimum csak erre a gráfra teljesül. Mivel
G-nek triviálisan összefüggőnek kell lennie, a konstrukciónk optimális.
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E+5. Legyen P (x) egy olyan polinom, melynek minden együtthatója nemnegatív valós szám, továbbá P (0) = 0.
Tegyük fel, hogy ha 0 ≤ x ≤ 1, akkor P (−2025x) ≥ −2025P (x). Legyenek x1, . . . , x2026 olyan valós számok, melyek
összege nemnegatív. Bizonyítsátok be, hogy ha minden xi-re teljesül, hogy −2025 ≤ xi ≤ 1, akkor

P
(x1 + . . .+ x2026

2026

)
≤ P (x1) + . . .+ P (x2026)

2026
.

Bán-Szabó Áron feladata

Megoldás: Tegyük fel, hogy az x1, x2, . . . , xk számok negatívak, az xk+1, xk+2, . . . , x2026 számok pedig
nemnegatívak. Ha az összes szám nemnegatív, akkor k = 0.

Mivel minden 1 ≤ i ≤ k-ra −2025 ≤ xi < 0, így 0 < − xi
2025 ≤ 1. Legyen yi = − xi

2025 . Ekkor az
y1, . . . , yk számokra alkalmazható a megadott egyenlőtlenség: P (xi) ≥ −2025P (yi). Összeadva:

P (x1) + P (x2) + . . .+ P (xk) ≥ −2025 (P (y1) + P (y2) + ...+ P (yk))

Azonban vegyük észre, hogy

P (y1) + P (y2) + . . .+ P (yk) ≤ P (y1 + y2 + ...+ yk),

ami azért igaz, mert ha a jobb oldalt kibontjuk polinomként, akkor a bal oldal minden tagja szerepelni
fog a jobb oldalon is, illetve még nemnegatív együtthatós tagok, melyekbe a pozitív yi-k polinomjai
vannak beírva, tehát ezek összege biztosan nemnegatív. Így

P (x1) + . . .+ P (x2026) ≥ −2025((P (y1) + . . .+ P (yk)) + P (xk+1) + . . .+ P (x2026) ≥

≥ −2025P (y1 + y2 + ...+ yk)+(k − 1)P (0) + P (xk+1) + . . .+ P (x2026)

használva, hogy P (0) = 0. Azonban a P (x) polinom a nemnegatív valósokon konvex, mert második
deriváltja is egy nemnegatív együtthatós polinom, ami nemnegatív valósokon nemnegatív értéket vesz
fel. Ezért a Jensen-egyenlőtlenséget alkalmazva

(k − 1)P (0) + P (xk+1) + P (xk+2) + . . .+ P (x2026) ≥ 2025P

(
xk+1 + xk+2 + . . .+ x2026

2025

)
.

Mostantól az egyszerűség kedvéért legyen X =
xk+1+xk+2+...+x2026

2025 és Y = y1 + y2 + . . . + yk. Ekkor
világos, hogy elég belátnunk, hogy

2025P (X)− 2025P (Y )

2026
≥ P

(
2025X − 2025Y

2026

)
,

hiszen 2025X − 2025Y = x1 + x2 + ...+ x2026. Ehhez először az kell, hogy

2025P (X)− 2025P (Y )

2026
≥ 2025

2026
P (X − Y ),

ugyanis P (X − Y ) + P (Y ) ≤ P (X), megint alkalmazva, hogy P (a) + P (b) ≤ P (a+ b) tetszőleges a, b
nemnegatív számokra, ahogy fent bizonyítottuk. Továbbá

2025

2026
P (X − Y ) ≥ P

(
2025

2026
(X − Y )

)
,

mert mindkettőt X − Y ≥ 0 polinomjaként felírva a bal oldalon minden tag szorzója 2025
2026 lesz, míg

a jobb oldalon az i-edfokú tag szorzója
(
2025
2026

)i, ami kisebb vagy egyenlő lesz i ≥ 1 esetén. Azonban
P (0) = 0, vagyis P konstans tagja 0, tehát a bal oldalon az összes tag szorzója legalább akkora, mint
a jobb oldalon, és mivel minden tag nemnegatív, ez elegendő. Az utolsóként kapott két egyenlőtlenség
egymás után fűzése pedig pont az, amit meg szerettünk volna kapni.
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E+6. Játék: A játék kezdetén a játékvezető felír nyolc pozitív egész számot az első szintre, és megad egy k pozitív
egész számot, ami nem nagyobb a nyolc szám összegénél. Egy lépésben a soron következő játékos letöröl két számot
ugyanarról a szintről és az összegüket az eggyel nagyobb sorszámú szintre írja. Az a játékos nyer, aki először ír olyan
számot, ami legalább k.
Győzzétek le a szervezőket kétszer egymás után ebben a játékban! Ti dönthetitek el a nyolc szám és k ismeretében, hogy
a kezdő vagy a második játékos bőrébe szeretnétek bújni.
Imolay Andris feladata

Megoldás: Legyenek a számok az első szinten: a1 ≥ a2 ≥ · · · ≥ a8. A második, harmadik és negyedik
szinten lévő számok szintenként a leírás sorrendjében: b1, b2, b3, b4, c1, c2 és d.

A második játékosnak pontosan akkor van nyerő stratégiája, ha a1 + a2 + a7 + a8 < k és a3 + a4 +
a5 + a6 ≥ k.

Tegyük fel, hogy valamelyik feltétel nem teljesül. Megmutatjuk, hogy az elsőnek van nyerő stratégiája.
Az első játékos az első lépésben írja a b1 = a1 + a2-t. Ha ezzel nem nyer, akkor ezután a második

játékos ír egy b2 ≥ a7 + a8 számot. Ezzel ő nem tud nyerni, mivel b2 ≤ b1. Következő lépésben az első
játékos a c1 = b1 + b2 ≥ a1 + a2 + a7 + a8-t írja. Ha ez legalább k, akkor nyer az első játékos. Ha ez
kisebb, mint k, akkor a feltevésből tudjuk, hogy az a3+ a4+ a5+ a6 < k. A következő három lépésben
a legnagyobb előállítható szám a c2 = b3 + b4 ≤ a3 + a4 + a5 + a6 < k, így az első játékos fog nyerni a
d = c1 + c2 ≥ k-val.

Most mutassuk meg, hogy a második játékos tud nyerni, ha mindkét feltétel teljesül. Mivel a1+a2 <
k, ezért csak a c1, c2 és d számokkal lehet nyerni.

Az első játékos először ír egy b1-et, majd a második játékos az alsó szinten megmaradó két legkisebb
számot összeadva ír egy b2-t. Ezután az első játékos készít egy c1 = b1 + b2 ≤ a1 + a2 + a7 + a8 < k
számot, vagy egy b3-t. Ha b3-at ír, akkor a második játékos készíti el a c1 = b1 + b2 < k számot.
Így a következő szám, amivel lehet nyerni, az c2 lesz. Látható, hogy a c2 pontosan a 6. lépésben tud
létrejönni, így a második játékos fogja leírni. Mivel nem lesz benne a7 és a8, mivel azok b1 vagy b2-be
kerültek, így c2 = b3 + b4 ≥ a3 + a4 + a5 + a6 ≥ k, vagyis a második játékos fog nyerni.
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