
Elméleti feladatok

1. feladat
A fonálinga általános mozgása igen bonyolult, és felsőbb matematikai eszközöket igényel,

azonban az általunk vizsgált kis kitérésű határesetben a mozgásegyenlet jól ismert módon a har-
monikus rezgőmozgás alapegyenletére redukálódik. Ekkor a szögkitérés időfüggése egyszerűen
kifejezhető:

φ(t) = φmax cos (ωt) . (1)

Itt ω =
√

g/ℓ a rezgőmozgás körfrekvenciája. A pillanatnyi szögsebesség a fenti összefüggés
időderiváltjaként, vagy pedig a rezgőmozgás nevezetes összefüggéseinek ismeretében kapható:

φ̇(t) = −φmaxω sin (ωt) . (2)

A perdület pedig ezen szögsebesség és a testnek a forgástengelyre vonatkoztatott mℓ2 tehetet-
lenségi nyomatéka szorzataként adódik:

J = mℓ2φ̇ = −mℓ2φmaxω sin (ωt) . (3)

Az (1) és (3) egyenletekből a szögfüggvényeket kifejezve, továbbá a sin2(ωt)+cos2(ωt) = 1 trigo-
nometriai összefüggést felhasználva az idő kiküszöbölhető. Rendezés után az alábbi egyenletre
jutunk:

φ2

φ2
max

+ J2

(mℓ2φmaxω)2 = 1 . (4)

Ez jól láthatóan egy ellipszis egyenlete, amelynek főtengelyei rendre φmax és mℓ2φmaxω. A
trajektóriát ábráolhatjuk is a φ − J síkon, ezt az 1. ábra mutatja.
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1. ábra. A rendszer fázistérbeli trajektóriájának ábrázolása m = 100 g, ℓ = 40 cm és különböző
φmax szögamplitúdók mellett. A φmax = 5◦ esetet vastaggal jelöltük.
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2. feladat
Az adiabatikus invariáns a megadott definíció szerint az előző feladatban kapott ellipszis

területe, azaz a féltengelyek szorzatának π-szerese. Behelyettesítve:

I = mℓ2φ2
maxωπ. (5)

Felhasználva továbbá a körfrekvenciára vonatkozó, korábban már említett ω =
√

g/ℓ összefüg-
gést, az adiabatikus invariáns kifejezhető a rendszer alapvető paraméterei és a szögamplitúdó
segítségével:

I = mg1/2ℓ3/2φ2
maxπ . (6)

3. feladat
Az adiabatikus invariáns (6) képletét és annak mozgásállandó tulajdonságát felhasználva a

szögamplitúdó kifejezhető, mint a fonál hosszának függvénye:

φmax = 4

√
I2

m2gπ2 · ℓ−3/4. (7)

Mindkét oldal természetes alapú logaritmusát véve a következő összefüggésre jutunk:

ln (φmax) = 1
4 ln

(
I2

m2gℓ3π2

)
. (8)

A jobb oldali logaritmus argumentumában szereplő törtet bővíthetjük a kezdeti ℓ0 fonálhossz
köbével. Ezt követően logaritmikus azonosságokat felhasználva a jobb oldal különbséggé alakít-
ható:

ln (φmax) = 1
4 ln

(
I2

m2gℓ3
0π

2

)
− 3

4 ln
(

ℓ

ℓ0

)
. (9)
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Mérési feladatok
Minden damilhossz esetén feljegyeztük az amplitúdókat, ezek az 1. táblázatban láthatóak.

Az egész mérés során csak ennek a két paraméternek a hibája terjed.

ℓ0 [cm] ∆ℓ [cm] A [cm] ℓ [cm] tg φmax φmax [rad]

57,5 10 3,6 67,5 0,063 0,063
57,5 20 3,4 77,5 0,059 0,059
57,5 30 3,2 87,5 0,056 0,056
57,5 40 2,9 97,5 0,050 0,050
57,5 50 2,6 107,5 0,045 0,045
55,5 10 3,7 65,5 0,067 0,067
55,5 20 3,4 75,5 0,061 0,061
55,5 30 3,0 85,5 0,054 0,054
55,5 40 2,7 95,5 0,049 0,049
55,5 50 2,5 105,5 0,045 0,045
55,5 10 4,9 65,5 0,088 0,088
55,5 20 4,5 75,5 0,081 0,081
55,5 30 4,1 85,5 0,074 0,074
55,5 40 3,6 95,5 0,065 0,065
55,5 50 3,2 105,5 0,058 0,058

1. táblázat. Bal oldalon a három mérési sorozat eredménye, ahol ℓ0 a vonalzó és a felfüggesztés
távolsága, ∆ℓ a vonalzó és a súly távolsága, A a vonalzón mért kitérés. Jobb oldalon az ezekből
számolt adatok: az ℓ teljes lengési hossz, valamint a φmax maximális kitérési szög és annak
tangense.

A vonalzó magasságában a damilhossz ℓ0, így a φmax szöget az alábbi módon számolhatjuk:

φmax = arctg
(

A

ℓ0

)
. (10)

A hibaterjedés képletét felhasználva:

∆φmax =
∣∣∣∣∣∂φmax

∂A

∣∣∣∣∣∆A +
∣∣∣∣∣∂φmax

∂ℓ0

∣∣∣∣∣∆ℓ0. (11)

Elvégezve a deriválásokat, megkapjuk φmax hibáját:

∆φmax = ℓ0∆A + A∆ℓ0

ℓ2
0 + A2 . (12)
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Könnyen látható, hogy
∆(ln φmax) = ∆φmax

φmax
. (13)

A (9)-es egyenletnek megfelelően az ln φmax értékeket ln(ℓ/ℓ0) függvényében ábrázolva kapjuk
az 2. ábrát. Ezen feltüntettük ln φmax hibáit is.

2. ábra. A mért maximális szögkitérés logaritmusa ábrázolva a damilhossz logaritmusának függ-
vényében mindegyik mérési sorozat esetén. A satírozott 1σ-sáv jelöli az illesztés bizonytalansá-
gát.

Az illesztésből meghatározható a meredekség, ez látható a 2. táblázatban. A meredekség hibáját
mi numerikusan az illesztésből becsültük; a versenyzőktől a két „még éppen illeszkedő egyenes”
illesztése volt elvárt, ezek meredekségével becsülhetjük a hibát.

α ∆α

1. mérés 0,66 0,09
2. mérés 0,84 0,05
3. mérés 0,86 0,08

2. táblázat. A különböző méréssorozatokra illesztett α értékek és hibáik.
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A három mérési sorozatot súlyozott átlagából kapjuk a végeredményünket:

α = (0,81 ± 0,04) . (14)

Ez hibahatáron belül egyezik az elméleti várakozásunkkal, jó volt tehát a modellünk. Az illesz-
tésekből a függőleges tengelymetszet is meghatározható, ez jól láthatóan eltér a három mérési
sorozat esetén. Mivel ez függ a kezdeti szögamplitúdótól, így nem meglepő a kapott eredmény.
Az is látható, hogy a tengelymetszet nem zérus, ez is egyezik a várakozásainkkal.
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