
E+1. Hány olyan kétjegyű pozitív egész szám van, amely megegyezik a számjegyei összegének és a számjegyei
szorzatának összegével?

A kétjegyű pozitív egész számok a 9-nél nagyobb és 100-nál kisebb egészek.

Megoldás: Legyen a keresett kétjegyű szám első számjegye a és a második számjegye b, tehát maga
a szám ab = 10a + b. Ekkor a számjegyek összege a + b, a számjegyek szorzata pedig a · b. Ebből az
alábbi egyenlőséget kapjuk: 10a + b = a + b + a · b. Levonva mondkét oldalból a + b-t, azt kapjuk
hogy 9a = a · b. Leoszthatunk a-val, mert a biztosan nem 0, így b = 9. Arra jutottunk, hogy b = 9,
a viszont bármi lehet, mindenképpen teljesíteni fogja az egyenletet. Azaz a keresett kétjegyű számok:
19, 29, 39, 49, 59, 67, 89, 99, ami 9 darab szám.

Alternatívan, minden fix tízes helyiértékre legfeljebb egy megoldás lehet, hiszen az egyes helyi érték
változtatásakor számjegyek összege annyival nő, amennyi a számjegyek szorzata.

E+2. Boti, a bébi bástya egy minden irányban végtelen sakktáblán él. Boti minden éjszaka alva jár, ami során
mindig átmászik egy oldalszomszédos mezőre, arra viszont nem emlékszik hogy melyikre. Minden délben megmondja
neki a sakk királynője, hogy az aktuális mezőjének a négy oldalszomszédján hányszor járt eddig. Ezt a négy számot
mindig véletlenszerű sorrendben mondja, tehát Boti nem tudja, hogy közülük melyik szám melyik mezőre vonatkozik.
Boti boldog egy napon, ha biztosan tudja, hogy olyan mezőn van, ahol már korábbi napon is volt. Leghamarabb hányadik
napon lehet boldog Boti?
Boti először az első és második nap közti éjszakán jár alva, napközben nem változtat helyet és emlékszik arra, hogy a
korábbi napokon miket mondtak neki.

Megoldás: Boti, a bástya az első napon biztosan (0, 0, 0, 0)-t hall, a másodikon pedig biztosan (1, 0, 0, 0)-
t. Aztán a harmadik napon akár visszamászott az eredeti mezőre, akár nem, mindenképp (1, 0, 0, 0)-t
hall. A negyedik napig az alábbi mászássorozatokat tehette (a szimmetria miatt feltehetjük, hogy az
első éjszaka jobbra mászott és azt is, hogy az első alkalommal, amikor nem jobbra vagy balra ment,
akkor felfelé):

• Jobbra-jobbra-jobbra: Ennek a végén (1, 0, 0, 0)-t hall és új mezőn jár;
• Jobbra-jobbra-fel: Ennek a végén (1, 0, 0, 0)-t hall és új mezőn jár;
• Jobbra-jobbra-balra: Ennek a végén (1, 1, 0, 0)-t hall és nem jár új mezőn;
• Jobbra-fel-balra: Ennek a végén (1, 1, 0, 0)-t hall és új mezőn jár;
• Jobbra-fel-le: Ennek a végén (1, 1, 0, 0)-t hall és nem jár új mezőn;
• Jobbra-fel-jobbra: Ennek a végén (1, 0, 0, 0)-t hall és új mezőn jár;
• Jobbra-fel-fel, Ennek a végén (1, 0, 0, 0)-t hall és új mezőn jár;
• Jobbra-balra-jobbra: Ennek a végén (2, 0, 0, 0)-t hall és nem jár új mezőn;
• Jobbra-balra-fel: Ennek a végén (2, 0, 0, 0)-t hall és új mezőn jár;
• Jobbra-balra-balra: Ennek a végén (2, 0, 0, 0)-t hall és új mezőn jár.
Látható tehát, hogy minden számnégyes esetén van olyan lehetőség, ahol új mezőre lép a 4. napon,

ezért ekkor még nincs olyan hallott sorozat, ami a boldogságot garantálná. Az ötödik napon azonban
már van: ha a 4. napon és az 5. napon is (1, 1, 0, 0)-t mondott neki a sakk királynője, akkor az 5. napon
mindenképpen olyan mezőn van, ahol korábban járt, hiszen ez (a korábban említett szimmetriától elte-
kintve) a fenti esetszétválasztásból csak a harmadik, negyedik, és ötödik eset folytatásaként állhat elő,
és ezek közül is csak a jobbra-fel-balra-le és a jobbra-fel-balra-jobbra lépéssorozatok esetén következhet
be, és mindkét esetben olyan mezőn van, ahol már járt korábban. Tehát a válasz 5.

E+3. Egész számok egy 10 elemű H halmazának összes nem üres részhalmazára képezzük a részhalmaz elemeinek
összegét, az így kapott 1023 szám szorzatát jelölje P . Mennyi az olyan prímszámok összege, amelyek bármely, a leírt
tulajdonságokkal rendelkező H halmazra osztják a H-hoz tartozó P szorzatot?
A halmaz minden eleme különböző.

Megoldás: A H halmaz elemeit modulo a vizsgált prím (p) tekintsük. Egy prím megfelelő és kérdéses
összeg tagja, ha H valamelyik részhalmazának összegét osztja.
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• Legyen p = 2. Ekkor a skatulya elv miatt a H halmaz elemei között van legalább 2db azonos
paritású szám. Ekkor az ebből a két számból alkotott kételemű részhalmaz összege páros lesz,
így a 2 egy megfelelő prím.

• Legyen p = 3. Ekkor a skatulya elv miatt a H halmaz elemei között van legalább 3db azo-
nos maradékot adó szám 3-mal osztva. Ekkor az ebből a három számból alkotott háromelemű
részhalmaz összege 3-mal osztható lesz, így a 3 egy megfelelő prím.

• Indirekten tegyük fel, hogy a p = 5 nem megfelelő prím. Ekkor a H halmaz elemei között nem
lehet modulo 5-tel 0 maradékot adó eleme. Ha a H halmaz elemei között van legalább egy modulo
5-vel 1 maradékot adó eleme, akkor nem lehet modulo 5-tel 4 maradékot adó eleme. Ha a H
halmaz elemei között van legalább egy modulo 5-tel 2 maradékot adó eleme, akkor nem lehet
modulo 5-tel 3 maradékot adó eleme. És nem lehet 5db azonos modulo 5-tel maradékot adó
eleme H-nak. Így legfeljebb 4db modulo 5-tel 1/4 maradékot adó eleme és legfeljebb 4db modulo
5-tel 2/3 maradékot adó eleme lehet H-nak, ami összesen legfeljebb 8 elem. Így ellentmondásra
jutottunk, tehát a p = 5 megy megfelelő prím.

• Indirekten tegyük fel, hogy a p = 7 nem megfelelő prím. Először vizsgáljuk meg azt az esetet,
amikor H-nak van legalább négy, 7-tel 1 maradékot adó eleme. Ekkor H-nak nem lehet 7-tel
0, 3, 4, 5, vagy 6 maradékot adó eleme, továbbá legfeljebb 6 darab 1 maradékú, és legfeljebb 1
darab 2 maradékot adó elem lehet, ami ellentmondás. Az 1/6, 2/5, 3/4 olyan maradékpárok,
melyekből egyszerre csak egy lehet H-ban, így (mivel 0 maradékot adó szám nem lehet,) leg-
feljebb 3 különböző maradékosztály szerepelhet a halmazban. Így skatulyaelv miatt lesz olyan
maradékosztály amiben legalább 4 eleme van H-nak, legyen ez c ∈ {1, 2, 3, 4, 5, 6}. A fenti eset-
hez hasonlóan bármely c-re ellentmondásra juthatunk, az alábbiakban egy alternatív befejezést
mutatunk.

Bármely c-re létezik c′ ∈ {1, 2, 3, 4, 5, 6} amelyre c · c′ ≡ 1 (mod 7), az alábbiak szerint: 1 · 1 ≡
2 · 4 ≡ 3 · 5 ≡ 6 · 6 ≡ 1 (mod 7). Szorozzuk meg H minden elemét c′-vel, így egy olyan 10 elemű
H ′ halmazt kapunk, ahol van legalább négy darab, 7-tel osztva 1 maradékot adó szám. Ekkor a
fenti eset szerint létezik b1, . . . , bk ∈ H ′, amelyek összege osztható 7-tel. Minden b ∈ H ′ b = a · c′
alakú valamilyen a ∈ H-ra, tehát 7|a1 · c′ + · · · + ak · c′, és mivel 0 < c′ < 7, 7|a1 + · + ak, ami
ellentmondás.

• Ha p ≥ 11, akkor vegyük azt az esetet amikor H mind a 10 eleme 1 maradékot ad p-vel osztva.
Ekkor bármelyik k elemű részhalmazában az elemeinek összege k maradékot fog adni modulo p,
és mivel k < p, nem létezik olyan részhalmaz, aminek az elemeinek összege osztható p-vel.

Így a megfelelő prímjeink összege, azaz P = 2 + 3 + 5 + 7 = 17.

E+4. A Nemzetközi Matematikai Diákolimpián mindkét nap 3 feladat szerepel. A feladatok négy témakörre vannak
bontva: algebra, geometria, számelmélet és kombinatorika. A szervezők előzetesen minden témakörből kiválasztanak 3
könnyű, 3 közepes és 2 nehéz feladatot. Ezekből a feladatokból állítja össze a zsűri a feladatsort úgy, hogy teljesüljenek
a következő feltételek:

• Az 1. és 4. könnyű, a 2. és 5. közepes, a 3. és 6. nehéz legyen.
• Az 1-es, 2-es, 4-es és 5-ös feladatok között mind a négy témakör szerepeljen.
• Egyik nap sem lehet két azonos témakörű feladat.

Hányféle feladatsort állíthat össze a zsűri, ha 1. feladatnak egy algebra feladatot fognak kitűzni?
Az első napon az 1., 2. és 3., a másodikon pedig a 4., 5. és 6. feladatok szerepelnek.
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Megoldás: Az 1-es, 2-es, 4-es és 5-ös feladatok közt mind a négy témakör egyszer szerepel és az 1-es
feladat algebra, így a maradék három feladathoz a maradék három témát 3! = 6-féleképpen tudjuk
kiválasztani. Az első és a negyedik feladatok könnyűek, a második és ötödik feladatok közepesek, melyek
közül mind 3-3 szerepel az előzetes feladatok közül. Mivel ezek a feladatok különböző témakörökből
vannak, ezért egymástól függetlenül választható ki, hogy a három lehetőség közül melyik legyen az
adott feladat. Így ezeket a feladatokat 34 = 81-féleképpen választhatjuk ki. Még hátra van a 3-as és
a 6-os feladat. Ezek témája nem egyezhet az adott napi feladatsor korábbi feladatainak témájával,
így mindkettőre két-két témalehetőség van (és ezek különbözőek is lesznek szükségszerűen a korábbi
4 feladat témája miatt). Mindkét feladat a nehéz feladatok közül való és mivel témájuk különbözik,
ezért egymástól függetlenül két-két lehetőség van kiválasztani a konkrét feladatot az előzetes nehezek
közül. Így a 3-as és 6-os feladatokra további 24 = 16 lehetőség van. A felsorolt kiválasztások egymástól
függetlenek, így az esetek összeszorzódnak, azaz 6 · 34 · 24 = 6 · 81 · 16 = 65 = 7776-féle feladatsort
állíthat össze a zsűri.

E+5. Adott egy O középpontú egységsugarú k kör és egy e érintője. Legyen f egy olyan egyenes, ami merőleges e-re
és k-t két különböző pontban metszi. Legyenek f -nek az e-vel, illetve k-val való metszéspontjai rendre E, A és B, ebben
a sorrendben elhelyezkedve f -en. Legyen az e és BO egyenesek metszéspontja I. Legyen g az I-ből k-hoz húzott e-től
különböző érintő, az érintési pontja legyen J . Tudjuk, hogy g merőleges e-re. Legyen továbbá a BI és az AJ egyenesek
metszéspontja H, valamint legyen az AH szakasz hossza x. Mennyi (x2 − 4)2?

Megoldás: Legyen K az e érintési pontja k-val. Mivel az I-ből húzott két érintő merőleges egymásra,
ezért KIJO egy négyzet, hiszen K és J csúcsánál is derékszög van, hiszen azok érintési pontok.
Legyen L az OJ és EB egyenesek metszéspontja. Mivel OI a KIJO négyzet egy átlója, ezért IOJ∢ =
BOL∢ = 45◦. Viszont, mivel O a kör középpontja, és AB egy húr, ezért LO felezi a BOA∢-t, valamint
L felezi BA-t. Ebből BOA = 90◦, amiből kapjuk, hogy |BA| =

√
2. Viszont mivel L felezi BA-t

ezért |AL| = |BL| = |OL| =
√
2
2 . Ebből kapjuk, hogy |JL| = 1 +

√
2
2 . Ekkor Pithagorasz tételből
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√(√

2
2

)2
+
(
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2
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√
2 + 1)

Vegyük észre, hogy IJ és BA párhuzamosak, amiből következik, hogy HIJ és HBA háromszögek
hasonlóak egymással, és a hasonlóságot felírva kapjuk, hogy |AH|

|HJ | =
|BA|
|IJ | =

√
2
1 . Ekvivalens azzal, hogy

|HA|
|AJ | =

√
2

1+
√
2
, vagyis |AH| =

√√
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√
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√
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=
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2
√
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2+1
A gyökön belüli tört számlálóját és nevezőjét is megszorozva

√
2−1-el,

√
2
√
2√

2+1
=
√

2
√
2 · (

√
2− 1) =√

4− 2
√
2

(x2 − 4)2 = 8
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E+6. Moriarty professzor végtelen sokszor feldob egy szabályos dobókockát. Mennyi a valószínűsége annak, hogy
előbb dob 6-ost, mint három alkalommal páratlan számot? Válaszként a tört egyszerűsített alakjában a számláló
és a nevező összegét adjátok meg!
A három páratlan számot nem kell közvetlenül egymás után dobnia.

Megoldás: Mivel annak 0 a valószínűsége, hogy végtelen sok dobás alatt egyik kérdéses esemény se
következik be, feltehetjük, hogy 2-est és 4-est soha nem dobunk, így mindig 3

4 eséllyel dobunk páratlant
(nem 6-ost). Ahhoz, hogy előbb dobjunk 3 páratlan számot, ahhoz ennek kell történnie 3 alkalommal,
ennek valószínűsége (34)

3, így annak a valószínűsége, hogy előbb dobunk 6-ost, 1 − 3
4 = 37

64 . Válasz:
37 + 64 = 101.

E+7. Egy varázslónak kezdetben van egy 1 koncentrációjú oldata kék, és egy 0 koncentrációjú oldata piros üvegben.
A varázsló két, különböző színű üvegben lévő oldat segítségével képes a semmiből egy új oldatot varázsolni egy üres kék
vagy piros üvegébe, aminek koncentrációja a két oldat koncentrációjának átlaga. Legfeljebb mennyi lehet 15 varázslat
után a varázsló kék üvegeiben lévő oldatok koncentrációinak összege? Válaszként a tört egyszerűsített alakjában
a számláló és a nevező összegét adjátok meg!
Az oldatok nem tölthetőek át más üvegbe. Amikor a varázsló új oldatot varázsol, a két felhasznált üveg színe és tartalma
nem változik.

Megoldás: Nevezzük összkoncentrációnak a maximalizálandó mennyiséget, vagyis a kék üvegeiben
lévő oldatok koncentrációinak összegét, nevezzünk optimálisnak egy konstrukciót amennyiben ott az
összkoncentráció maximális. Először lássuk be, hogy van olyan optimális konstrukció, amiben először
n piros üvegbe varázsol mindig az eredeti kék üveges oldat és az aktuálisan legújabb piros oldat
segítségével (kezdetben az eredeti piros üveges oldat segítségével), majd 15−n-szer az eredeti kék és a
legújabb piros segítségével kékeket varázsol. Ennek bizonyításához vegyünk egy optimális konstrukciót,
ha ezt módosítjuk úgy, hogy minden varázslásnál az eredeti kéket használjuk a konstrukcióban szereplő
helyett akkor azzal nem ronthatunk a konstrukciónkon, hisz minden oldat koncentrációja legfeljebb 1.
Ezt tovább módosítjuk úgy, hogy először a pirosakat készítjük el (ugyanabban a sorrendben, tehát
mindig amikor kéket csinálnánk azt folyamatot félre tesszük és később végezzük el), ez megtehető, hisz
varázslással kapott kéket már nem használunk másik oldat varázslásához és persze ugyanaz lesz az
összkoncentráció, mivel csak a varázslatok sorrendjén változtattunk. Feltehető, hogy a piros oldatok
közül az utoljára készített oldat koncentrációja nagyobb, mint a már meglévő piros oldatoké, hiszen
ha nem így lenne, akkor lenne egy korábbi oldat, aminek legalább akkora a koncentrációja, és a most
készített oldatunk helyett elkészíthettünk volna abból is egy oldatot, aminek a koncentrációja nagyobb
lenne, ezzel pedig a konstrukció összkoncentrációja nem csökkenne. Ebből azonnal következik, hogy a
piros oldatok koncentrációja az elkészítésük sorrendje szerint monoton nő. Ebből persze az is következik,
hogy a legújabb oldatot mindig a legutóbb varázsolt piros oldat segítségével készítjük el.
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Ezek után a maximális összkoncetráció megtalálásához elég az ilyen konstrukciókat vizsgálni, egy
ilyen konstrukcióban pedig a összkoncentráció= 1+ (15−n) · (1− 2−n−1) = 16− 15

2n+1 −n+ n
2n+1 , hisz

van az eredeti 1 koncentrációjú kék oldat, és van 15 − n darab kék oldat amiknek a koncentrációja
(1−2−n−1). Ha n-ről n+1-re változtatjuk a piros oldatok számát, akkor az összkoncentráció változása:
15

2n+1 − 15
2n+2 − 1 + n

2n+2 − n
2n+1 , vizsgáljuk ennek előjelét, ehhez persze elég a 2n+2-szeresét vizsgálni:

30 − 15 − 2n+2 + n − 2n = 15 − (2n+2 + n), ami n < 2-re pozitív és egyébként negatív. Tehát a kék
összkoncentráció n = 2-ig szigorúan nő, utána pedig szigorúan csökken, tehát a keresett n = 2-re lesz
maximális: 1 + 13 · 7

8 = 99
8 , azaz a megoldás 107.

E+8. Egy szabályos kilencszög összes oldalának és átlójának az egyenesét berajzoltuk. Hány szabályos háromszöget
határoznak meg ezek az egyenesek?

Megoldás: Mivel 9 páratlan, ezért a kilencszög minden átlója párhuzamos valamelyik oldallal. Így
kategorizálhatjuk a szabályos háromszögeket aszerint, hogy melyik oldalakkal párhuzamosak az ol-
dalai. Világos, hogy ha a három átló szabályos háromszöget zár be, akkor a szabályos 9-szög velük
párhuzamos oldalai is, ez pedig a forgásszimmetria miatt pontosan akkor teljesül, ha minden harma-
dik oldalt választjuk ki, amit 3-féleképpen lehet megtenni, így 3 kategória lesz, és a szimmetria miatt
mindegyikben ugyanannyi eset.

Ekkor mindhárom irány esetén az azzal párhuzamos átlót 4-féleképpen lehet kiválasztani, ami
43 = 64 lehetőség. Ebből azonban még le kell vonni azokat az eseteket, amikor a három egyenes
nem határoz meg szabályos háromszöget, vagyis egy ponton mennek át. A megoldás végén szereplő
ábráról leolvasható, hogy a szabályos kilencszög átló/oldal egyenesei közül azok, amelyek a megfelelő
párhuzamossági osztályokban vannak, három csak akkor mehet át egy ponton, ha ez a pont csúcsa a
kilencszögnek. Így csak azokat az eseteket kell nézni, amikor a három egyenes egy csúcsban találkozik.
Ekkor a csúcs, amiben találkoznak (ami már egyértelműen meghatározza a három átlót) biztosan
végpontja valamelyik oldalnak, amivel párhuzamos a háromszög valamelyik oldalegyenese, ellenkező
esetben az egyik oldallal szemben lenne, de akkor nem mehetne át rajta ezen oldallal párhuzamos
egyenes. Ezen 6 csúcsban viszont mind találkozhat 3 átló, amik párhuzamosak a megadott irányokkal,
ezért 6 elfajuló eset van, vagyis 64 − 6 = 58 esetben határoznak meg szabályos háromszöget. Így az
összes lehetőség száma: 3 · 58 = 174.
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E+9. Egy 12 fős bűnbanda egy kerek asztal körül tart megbeszélést. Mindenki maga elé néz, vagy kölcsönösen
beszélget valamelyik szomszédjával. Hányféleképpen nézhet ki a megbeszélés?
Két megbeszélést akkor tekintünk különbözőnek, ha van két olyan ember, akik az egyik esetben beszélgetnek egymással, a
másikban nem.

Megoldás: Először nézzünk meg egy másik feladatot: Egy hosszú sorban ül n bűnöző, akiket megszá-
moztunk 1-től n-ig. Mindenki vagy maga elé néz, vagy párban beszélget egy szomszédjával. Hányféle-
képpen lehet ezt megvalósítani?

Ezen a feladaton belül legyen An az olyan megoldások száma, ahol az n. bűnöző maga elé néz.
Továbbá legyen Bn az olyan megoldások száma, ahol az n. bűnöző a szomszédjával beszélget.
Indukcióval szeretnénk megtalálni An és Bn értékét. Kis értékekre könnyen látható, hogy A2 = 1,
B2 = 1, A3 = 2 és B3 = 1.
Ha n ember ül a sorban, és az n. bűnöző maga elé néz, akkor a korábbi n − 1 ember bármilyen
beosztásban beszélgethet, ezért An = An−1 +Bn−1.
Ha n ember ül a sorban, és az n. bűnöző az n− 1. bűnözővel beszélget, akkor az első n− 2 embert kell
beosztani valamilyen módon, tehát Bn = An−2 +Bn−2.

A két egyenletet összeadva kapjuk, hogy An +Bn = An−1 +Bn−1 +An−2 +Bn−2.
A2 +B2 = 2 = F3, A3 +B3 = 3 = F4, és a továbbiakban An +Bn előállítására éppen a Fibonacci-

sorozat rekurziós összefüggését használtuk, ez alapján a továbbiakban is a Fibonacci-sorozat értékeit
kapjuk, azaz An +Bn = Fn+1.

Most térjünk át a kitűzött körasztalos feladatra! Egy körasztalnál ha az 1. és az 12. bűnöző nem
egymással beszélgetnek, akkor ugyanannyi lehetőséget kapunk, mintha egy sorban ülnének, azaz A12+
B12 = F13 lehetőséget.
Ha a körasztalnál az 1. és az 12. bűnöző egymással beszélgetnek, akkor a maradék 10 embert kell
beosztani valamilyen módon, itt a lehetőségek száma A10 +B10 = F11.
Tehát a körasztalnál az összes lehetőség száma A12 +B12 +A10 +B10 = F13 + F11 = 233 + 89 = 322.
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E+10. Juliska éppen olvasott, amikor Jancsi elkezdte találgatni, hogy melyik két oldalnál van nyitva Juliska könyve. A
kérdései alapján kiderült számára, hogy a két nyitott oldal száma között volt palindromszám, hatványszám, csupa páros
számjegyből álló szám és ötös számjegyet tartalmazó szám is, valamint az egyik szám legalább 10. Legfeljebb mennyi
lehet Juliska könyvében a legnagyobb oldalszám, ha ennek ismeretében Jancsi ki tudja találni Juliska válaszaiból, hogy
hányadik oldalaknál van nyitva?
Juliska könyvének az oldalai 1-től n-ig vannak számozva és Jancsi tudja n értékét, viszont azt nem tudja, hogy a könyv
bal vagy jobb oldalai vannak páros számokkal számozva. Azon számokat nevezzük palindromszámoknak, amelyek számje-
gyeit fordított sorrendben leírva visszakapjuk ugyanazt a számot, hatványszámoknak pedig azon pozitív egészeket, melyek
előállnak ab alakban, ahol a és b pozitív egészek és b ≥ 2.

Megoldás: A legkisebb lehetséges számpár a 9-10, de ezek nem tartalmaznak 5-ös számjegyet, így
nem lehet itt nyitva a könyv. A kétjegyű palindromszámok a 11-gyel osztható számok 99-ig, de ezek
közül csak a 44, 55 és 66 melletti számokban szerepel 5-ös számjegy, de ezek egyike sem hatványszám.
Így legalább háromjegyű mindkét oldalszám. Nézzük meg a 100 és 399 közti palindrom számokat. Ezek
1a1, 2b2 és 3c3 alakúak, így a mellettük álló számok 1a0, 1a2, 2b1, 2b3 és 3c2, 3c4 alakúak. Ezek közt
csak akkor szerepel 5-ös számjegy, ha a, b, c = 5. Ekkor viszont a középső számjegy páratlan mindkét
oldalon, így ezek a lehetőségek is kiestek. Azaz az oldalszámok közt van legalább 400 nagyságú. 500
és 598 közti szám nem állhat egyik oldalon sem, mert 499-től 599-ig minden szám tartalmaz páratlan
számjegyet. Nézzük meg 400 és 499 között a hatványszámokat, valamint 599-től kezdve szintén. Az ilyen
négyzetszámok a 202 = 400, 212 = 441, 222 = 484, 252 = 625, de a 400, 441 mellett nincsenek 5-ös jegyet
tartalmazó számok, így köztük a 484 és a 625 maradt lehetőségnek. A 484-485 és a 625-626 számok
valóban teljesítik a feltételeket, így Juliska könyve legfeljebb 625 oldalas lehet, hogy egyértelmű legyen
Jancsi számára az oldalszám. Azaz elég a hatványszámokat 400-499 és 599-625-ig figyelni. Köbszámok
nem esnek ide (73 = 343, 83 = 512, 93 = 729), ötödik hatványok szintén nem (35 = 243, 45 = 1024),
hetedik és kilencedik hatványok sem (27 = 128, 37 = 2187, 29 = 512), míg a párosadik hatványokat
már a négyzetszámok során végigvettük. Legfeljebb 625 oldalas Juliska könyve, ekkor kitalálható a két
oldalszám.

E+11. Jelölje t(n) az n szám számjegyeinek összegét. Hány jegyű a legkisebb olyan pozitív egész n, amelyre t(2n) =
2
9
t(n)?

Megoldás: Ismert, hogy egy szám pontosan akkor osztható 9-cel, ha a számjegyeinek összege is. Tehát
ahhoz, hogy 2

9 t(n) egész legyen, n-nek kilenccel oszthatónak kell lennie, azaz 2n is osztható 9-cel, tehát
t(2n) = 2

9 t(n) is. Ha 2
9 t(n) osztható kilenccel, akkor ennek a fele, azaz 1

9 t(n) is (hiszen ugyanannyi 3-as
prímtényezőt tartalmaz), azaz t(n) osztható 9 · 9 = 81-gyel, azaz t(n) legalább 81.

Vizsgáljuk meg, hogy hogy viszonyul egymáshoz 2t(n) és t(2n) helyiértékenként. Amennyiben n
kettővel való szorzása során egy adott helyiértéken nem történik tízesátlépés, abban az esetben x-ből
2x lesz, így itt ugyanannyi adódik hozzá 2t(n)-hez és t(2n)-hez. Ha valamelyik helyiértéken tízesátlépés
van, akkor x-ből 2x− 10 lesz, és hozzáadunk 1-et a következő helyiértékhez, azaz minden tízesátlépés
(10+x)−(1+x) = 9-cel csökkenti t(2n) értékét 2t(n)-hez képest. Képlettel felírva t(2n) = 2t(n)−9·#t,
ahol #t jelöli a tízesátlépések számát n kettővel való szorzása során.

Egy helyiértéken pontosan akkor fog tízesátlépés történni, ha ott legalább 5 szerepel, függetlenül a
kisebb helyiértékektől. Tegyük fel, hogy t(n) = 81, ekkor ahhoz, hogy a feladat feltételei teljesüljenek
t(2n)-nek 2

9 · 81 = 18-nak kell lennie, azaz 2·81−18
9 = 16 tízesétlépésnek kell történnie a 2-vel való

szorzás során, azaz n legalább 16 jegyű. A 16 jegyű számok között már található megfelelő n, például
n = 5555555555555556 esetén 2n = 11111111111111112, amire t(n) = 81 és t(2n) = 18.

Ha t(n) ̸= 81, akkor mivel t(n) osztható 81-gyel, legalább 162 értéke, tehát n legalább 162
9 = 18

jegyű, ami már több, mint 16, azaz a feladat kérdésére 16 a válasz.

E+12. Jelölje Tk(q(x)) a q(x) polinom legfeljebb k-adfokú tagjaiból képzett polinomot. Legyen p(x) egy 2026-odfokú
egész együtthatós polinom, amelyre Ti(p(x)) osztja p(x)-et minden 0 ≤ i ≤ 2026 egészre. Legfeljebb hány különböző
együtthatója lehet p(x)-nek?
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Például T3

(
x4 + 0x3 + 2x2 + 0x− 1

2

)
= 0x3+2x2+0x− 1

2
. A Ti(p(x)) polinom akkor osztja a p(x) polinomot, ha létezik

olyan t(x) egész együtthatós polinom, amelyre Ti(p(x)) · t(x) = p(x).

Megoldás: Jelölje a(x)|b(x) azt, ha egy b(x) polinom osztható az a(x) polinommal. A feladat feltételei
alapján T2025(p(x))|p(x) és nyilván T2025(p(x))|T2025(p(x)), tehát T2025(p(x))|p(x)− T2025(p(x)).

p(x)− T2025(p(x))-ben a 2026-odfokú tagot kivéve minden tag kiesik, tehát ez a különbség ax2026,
ahol a-val a p(x) polinom főegyütthatóját jelöltük. Ennek a polinomnak az osztói pontosan azon bxi

alakú polinomok, ahol b|a és i ≤ 2026, azaz T2025(p(x))-ben b-n kívül minden együttható 0, tehát a
polinomnak legfeljebb 3 különböző együtthatója lehet: a, b és a 0. Erre egy példa: p(x) = 2x2026 + 1.

E+13. Benedek két törtszámról tudja, hogy a szorzatuk egy egész szám és hogy őket egyszerűsített vegyes tört
alakban felírva a felírt hat darab egész szám az 1, 2, 3, 4, 5, 6 számok. Hányféle lehet ennek a két törtnek a halmaza?
A p

q
törtszám egyszerűsített vegyes tört alakja x y

z
, ahol x a szám egészrészével egyenlő és y

z
a szám törtrészének egysze-

rűsített tört alakja.

Megoldás: Legyen a két vegyes tört felírva a b
c és d e

f . Ezek szorzata (a+ b
c)(d+

e
f ) = ad+ aec+bdf+be

cf .
Ha ez a kifejezés egész, akkor c|dbf + be = b(df + e). Mivel b, c egy egyszerűsített tört számlálója és
nevezője, ezért relatív prímek, azaz c|df + e. Hasonlóan belátható, hogy f |ac+ b.

Vizsgáljuk meg, hogy mi lehet a nagyobbik nevező, feltehető, hogy ez c.
Ha c = 6, akkor b ∈ {1, 5}, hiszen b és c relatív prímek. Ekkor f |6a + 1 vagy f |6a + 5, ezért f

nem lehet 2, 3, 4, illetve 1 sem lehet, mert az nem állhat a nevezőben. Ebből tehát f = 5 és b = 1, és
5|6a+ 1 miatt a = 4, továbbá 6|5d+ e, ahol {d, e} = {2, 3}, ez viszont nem lehetséges, így nem lehet
6 a nevezőben.

Ha c = 5, akkor nézzük meg, mi lehet f értéke. Tudjuk, hogy nem lehet 1 és 6.

• Ha f = 4, akkor 5|4d+e és 4|5a+b, továbbá e ∈ {1, 3}. Ha e = 1, akkor az oszthatóság csak d = 6
esetén teljesül, de d > c nem lehet. Ha e = 3, akkor d is csak 3 lehetne, de nem használhatjuk
kétszer a 3-mat, így ebből sem kapunk megoldást.

• Ha f = 3, akkor 5|3d + e és 3|5a + b, ahol e ∈ {1, 2}. Ha e = 1, akkor nincs olyan d, amire
5|3d + 1. Ha e = 2, akkor d lehetne 1 vagy 6. Ha d = 1, akkor 3|5a + b, ahol {a, b} = {4, 6},
de ez nem lehetséges. Ha d = 6, akkor {a, b} = {1, 4} és ekkor mindkét eset ad is megoldást:
14
5 · 62

3 = 12, illetve 41
5 · 62

3 = 28.

• Ha f = 2, akkor e = 1 és 5|2d+ 1, ami csak d = 2 esetén teljesülne, de akkor a 2-t kétszer írtuk
volna fel.

Ha c = 4, akkor b ∈ {1, 3} és f ∈ {2, 3}. Ha f = 2, akkor e < f miatt e = 1, így 4|2d+ 1, ami nem
lehet. Ha f = 3, akkor b = 1 és emiatt e = 2, így 3|4a + 1, azaz a = 2 vagy a = 5. Ebből a = 2 nem
lehet, mert e = 2, így marad az a = 5 eset, ekkor d = 6, így a megoldás 51

4 · 62
3 = 35.

Ha c = 3, akkor f = 2, de ekkor b és e is csak 1 lehetne, így ez az eset sem ad megoldást.
Ezzel minden esetet megvizsgáltunk és megállapíthatjuk, hogy a két tört halmaza 3-féle lehet.

E+14. Töltsétek ki a táblázat mezőit az 1, 2, 3, 4, 5, 6 számjegyekkel úgy, hogy minden sorban és oszlopban minden
számjegy pontosan egyszer szerepeljen, és a táblázaton kívülre írt számok azt mutassák, hogy mi a legnagyobb szám,
ami előáll az adott sorban/oszlopban két szomszédos mezőben álló szám összegeként. Mi a táblázat sarkaiba kerülő négy
szám szorzata?
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3 1 6

5 1

9 11 8 9 10

10
7

6

Megoldás:
A harmadik sor mellett a 7 áll, azaz ott bármely két egymás melletti
szám összege legfeljebb 7. Tehát a 6 mellett csak az 1 állhat, tehát a 6 a
sor egyik szélén áll. Mivel a jobb oldali (balról hatodik) oszlopban már
van 6-os, így a harmadik sorban a 6 csak a bal szélre kerülhet, és az 1-es
közvetlen mellé.
A második sorban a 4 csak az első vagy a harmadik helyre kerülhet (a 6
mellé), hogy legyen két szomszédos, melyek összege 10. Ha az első helyen
lenne, akkor az első oszlopban egymás mellett lenne a 4 és a 6, ami nem
felel meg annak a feltételnek, hogy nincs két szomszédos, aminek az
összege nagyobb 9-nél. Tehát a 4 a második sor harmadik helyére kerül.
Tudjuk, hogy a második oszlopban van két szomszédos szám, melyek
összege 11, ez csak úgy lehet, ha a 6 és az 5 egymás melletti mezőben
van. Mivel a 6 alatti mező már foglalt, így az 5 a második oszlop legfelső
mezőjében van.

3 1 6

5 1

9 11 8 9 10

10
7

6
6 1

5
4

3 1 6

5 1

9 11 8 9 10

10
7

6
6 1

5
4
3 4 52

6

Mivel a harmadik sorban a szomszédosak összege legfeljebb 7, így az
5 mellé csak az 1 és a 2 kerülhet. Ha az 5 a balról harmadik oszlopba
kerülne, akkor egymás mellé kerülnének a 4-gyel, ezért lenne két szom-
szédos szám a harmadik oszlopban, melyek összege nagyobb, mint 8. Így
a harmadik sorban nem kerülhet az 5 az 1 mellé. Tehát az 5-nek csak
egy szomszédja lehet, azaz a jobb szélső mezőbe kerül, mellé pedig a 2.
Ekkor a harmadik sorból már csak a 3 és a 4 hiányzik. Mivel a balról
harmadik oszlopban már van 4, így itt csak a 3 állhat. A maradék helyre
kerül a 4. Így kitöltöttük a harmadik sort.
Mivel minden oszlopban pontosan egy 6-os van, így a (fentről) negyedik
sorban a 6-os a harmadik, a negyedik, vagy az ötödik helyen áll. Ha a
harmadik helyen állna, akkor a harmadik oszlopban egymás alá kerülne
egy 3 és egy 6, melyek összege nagyobb 8-nál, azaz ide nem kerülhet a
6-os. Ha a negyedik helyen állna, akkor a negyedik oszlopban egymás
alá kerülne egy 4-es és egy 6-os, ami ellentmond azzal hogy ebben az
oszlopban a szomszédos mezőben a számok összege legfeljebb 9. Tehát
a 6 az ötödik helyen áll.
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Ekkor a harmadik oszlopban a 6 csak a fentről első vagy a hatodik he-
lyen állhat, hiszen minden más sorban már van hatos. Mivel ebben az
oszlopban a szomszédos mezőkben a számok összege legfeljebb 8, így a
hatos nem kerülhet az első helyre a 4-gyel szomszédos mezőre. Tehát a
6 a legalsó (hatodik) helyre kerül. Az 5 nem kerülhet a harmadik oszlop
felső három helyére, mert azokban a sorokban már van 5. Nem kerülhet
a fentről ötödik helyre sem, a 6 fölé, mert ekkor lenne két szomszédos
szám az oszlopban melyek összege nagyobb 8-nál. Tehát az 5 a negye-
dik mezőben van. Ekkor ki tudjuk tölteni a harmadik oszlopot: itt két
üres mező van, amikre az 1 és 2 számokat írjuk. Mivel a fentről negyedik
sorban már van 1, így oda kerül a 2 és az legfelső mezőbe az 1.
Ahhoz, hogy minden számjegy minden sorban és oszlopban csak egyszer
szerepeljen, az utolsó 6-os az első sor negyedik helyén van.

3 1 6

5 1

9 11 8 9 10

10
7

6

5
6 1 2 53 4

5

6

4

6

1

2

6

3 1 6

5 1

9 11 8 9 10

10
7

6

5
6 1 2 53 4

5

6

4

6

1

2

6

4 5

32

Ekkor már csak két szám hiányzik az ötödik sorból, a 4 és az 5. Mivel
a negyedik oszlopban már van 4-es, így az ötödik sor negyedik helyére
kerül az 5 és az első helyére a 4.
A negyedik oszlopban van két szomszédos szám, melyek összege 9. Mivel
a 4, 5 és 6 közül semelyik kettő nem szomszédos, ezért ez csak akkor
fordulhat elő, ha a 3 a 6 mellé kerül: a második sor negyedik helyére.
Ekkor a második sorból már csak a 2 hiányzik, az első helyről.

Az első oszlopban három üres mező van. Az 5 csak a legalsó helyre
kerülhet, a többi sorban már van 5-ös. A maradék két helyből az 1 csak
a fentről negyedik helyen lehet, mert az első sorban már van 1. Így a bal
felső sarokba a 3 kerül.
Ekkor már ki tudjuk tölteni a negyedik oszlopot: onnan az 1 és a 2
hiányzik. Az 1 csak a legalsó mezőben lehet, mert a másik üres mező
sorában (a negyedik sorban) már van 1.
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5 1
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A második oszlopban két üres mező van, ahonnan a 2 és 4 számok hi-
ányoznak. A 2 csak a legalsó mezőbe kerülhet, mert a negyedik sorban
már van 2. Így a második oszlopba a 4 a negyedik sorba kerül.
A negyedik sor utolsó mezőjébe a 3 kerül, hisz már csak ez hiányzik
a sorból. Az utolsó oszlopban van két szomszédos szám melyek össze-
ge 10, azaz a hiányzó 4-es a 6 szomszédjába a bal alsó sarokba kerül.
Ekkor egy szám hiányzik az utolsó oszlopból: egy 2 a legfelső mezőből.
Ekkor már csak a legfelső és legalsó sorból hiányzik egy-egy szám, amik
egyértelműen kitölthetők az ábra szerint.

A táblázat sarkaiba a 2, 3, 4 és 5 számok kerülnek. Ezek szorzata 120.

E+15. Az ábrán látható kilenc négyzetbe szeretnénk valamilyen sorrendben beírni az 1, 2, . . . , 9 számokat úgy, hogy
a feltüntetett egyenlőtlenségek mind igazak legyenek. Minden négyzetbe egy számot írhatunk be és minden számot
pontosan egyszer használhatunk. Hányféleképpen tehetjük ezt meg?

< > < > < > < >

Megoldás: Legyen f(k) a 2k − 1 hosszú hullámzó sor megoldásainak száma.
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Egy 2k − 1 hosszú sorozatnál olyan esetből, amikor a legnagyobb szám a 2m. helyen van, akkor(
2k−2
2m−1

)
-féleképpen választhatjuk ki, hogy melyik számok legyenek a legnagyobb számtól balra, így ilyen

esetből
(
2k−2
2m−1

)
· f(m) · f(k −m) lehetőség van, vagyis f(k) =

∑k−1
i=1

(
2k−2
2i−1

)
· f(i) · f(k − i).

Innen lépésenként kiszámolhatóak az értékek:

• f(1) = 1, f(2) = 2

• f(3) =
(
4
1

)
· 1 · 2 +

(
4
3

)
· 2 · 1 = 2 · (4 · 2 · 2) = 16

• f(4) =
(
6
1

)
· 1 · 16 +

(
6
3

)
· 2 · 2 +

(
6
5

)
· 16 · 1 = 96 + 60 + 96 = 272

• f(5) =
(
8
1

)
· 1 · 272 +

(
8
3

)
· 2 · 16 +

(
8
5

)
· 16 · 2 +

(
8
7

)
· 272 · 1 = 7936

E+16. Hány olyan trapéz van, amelynek oldalai egész hosszúságúak és a kerülete 85 egység?
Két trapézt akkor tekintünk különbözőnek, ha nem egybevágóak.

Megoldás: Legyen a trapéz két alapjának hossza a és c a két szárának hossza b és d. Feltehetjük, hogy
a ≤ c és b ≤ d. Mivel az oldalak hosszának összege nem páros, ezért a trapéz nem lehet paralelogramma.
Minden olyan trapézt, ami nem paralelogramma, fel lehet bontani egy paralelogrammára és egy nem
elfajuló háromszögre, aminek az oldalai c− a, b, d.

Ha tudjuk, hogy a trapéz egyik szemközi oldalpárja x és y, a másik v és w úgy, hogy x ≥ y,
v ≥ w és max{x, y, v, w} < x+y+v+w

2 , akkor pontosan egy lehetséges trapéz rakható ki belőlük. Ha
x − y > v − w, akkor x és y lesznek a trapéz alapjai. (Ha v és w az alapok, akkor az x, y és |v − w|
oldalakra nem teljesül a háromszög-egyenlőtlenség.) Ha x − y < v − w, akkor x és y lesznek a trapéz
szárai. Az x− y = v − w nem teljesülhet a kerület páratlansága miatt.

Legyen x+ y = k ≤ 42, akkor v +w = 85− k. Ekkor tetszőleges 1 ≤ y ≤ k
2 -re és 85−k

2 ≤ v < 85
2 -re

pontosan 1 megoldás van, így az ilyen lehetőségek száma ⌊k2⌋ az y-ra és ⌈k2⌉ a v-re.
Vagyis a megoldások száma:

42∑
k=0

⌊k
2
⌋⌈k

2
⌉ =

(
20∑
l=1

l · l + l(l + 1)

)
+ 212 =

(
20∑
l=1

2l2 + l

)
+ 212 =

= 2
20(20 + 1)(2 · 20 + 1)

6
+

20(20 + 1)

2
+ 212 = 6391
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