


Figyelem! A teljes pontszám eléréséhez nem elegendő a megoldások számszerű közlése, leveze-
tés és a logikai lépések szöveges indoklása is szükséges (pl. „Newton III. törvénye alapján...”)!

1. feladat (11 pont)

v0

αα

Egy, a talajhoz rögzített R sugarú, függőleges
síkú kör tetejéből 2α középponti szöghöz tarto-
zó, a függőleges tengelyre szimmetrikus ív hiány-
zik, ahogyan az ábra is mutatja. A körív legalsó
pontjáról egy kis testet indítunk el v0 nagysá-
gú vízszintes kezdősebességgel. A kis test a kör
falán súrlódásmentesen csúszik. Miután eléri a
körív legfelső pontját, arról leválik, majd az ív
túlsó végét érintve „visszacsatlakozik”, és a kör-
ív belsejében folytatja útját. Legyen α > 0 és
v0 =

√
kgR, ahol k egy pozitív valós szám.

(a) Mekkora α esetén valósulhat meg a mozgás, ha k = 5?

(b) Legalább mekkora k esetén jöhet létre a mozgás? Mekkora az ehhez tartozó α szög?

2. feladat (14 pont)
Három m tömegű, pontszerű, Q töltésű test egy súrlódásmentes, vízszintes asztalon helyez-

kedik el. A testek kezdetben egy vonalban, nyugalomban vannak. A középső testet a szélső
kettővel egy-egy L hosszúságú, elhanyagolható tömegű, töltetlen, szigetelő anyagból készült fe-
szes kötél köti össze, ahogyan az ábra is mutatja. Egy óvatlan pillanatban a középső testet v0
sebességgel meglökjük a kötelekre merőleges irányban. Mekkora lesz a mozgás során a két szélső
test közötti legkisebb távolság?

Útmutatás: Feltehetjük, hogy a mozgás során a kötelek végig feszesek.
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3. feladat (15 pont)
Egy mesevilág mezején szélmalmot építenek. A mezőn a levegő sűrűsége ϱ, és v0 sebessé-

gű szél fúj mindig ugyanabból az irányból. A szélmalmot ezzel az iránnyal szembe építik. Az
L magasságú, d szélességű lapátok a forgás síkjához képest kis φ szöggel be vannak döntve.
Egy ferdén álló lapátra ható légellenállási erő kezelhető két külön erőként. Az egyik a lapra
merőleges, a másik pedig azzal párhuzamos. A bal oldali ábrán a szélmalom látható szemből,
míg a jobb oldali ábra a legfelső lapátra ható légellenállási erő felbontását mutatja felülnézetből
abban az állapotban, amikor ez a lapát függőlegesen felfelé áll. Kis φ esetén a két irányhoz
tartozó áramlási tényezők a következő formulákkal jól közelíthetők: a lappal párhuzamos légel-
lenállás áramlási tényezője Cp(φ) ≈ 2πφ, míg a lapra merőleges légellenállás áramlási tényezője
Cm(φ) ≈ a − bφ2, ahol a és b állandók.

(a) A szélkerék álló helyzetből indulásakor mekkora és milyen irányú forgatónyomaték hat a
kerékre? Tegyük fel, hogy a kerék páros sok (N darab) lapátból áll, és ezek egyenletesen
helyezkednek el.

(b) Egy humoros mérnök azon gondolkodik, mi lenne, ha csak egy lapátot raknának a szélma-
lomra. Mi ezzel a probléma? Mekkora és milyen irányú lesz ebben az esetben induláskor
a lapát által generált forgatónyomaték?

{ L Fm
Fp

φ

d

v0

Útmutatás: A légellenállási erőt az Fd = AϱCv2/2 összefüggéssel számoljuk, ahol ϱ a közeg
sűrűsége, A az áramlásra merőleges keresztmetszet, C a vizsgált test áramlási tényezője, v
pedig a közeg sebessége.
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4. feladat (13 pont)
Adott egy felfújt állapotában V térfogatú, jó hőszigetelő anyagból készült, alul nyitott bal-

lon, melynek aljára egy kosár van rögzítve. A ballon és a kosár össztömege m0, a levegő hő-
mérséklete és nyomása a ballonon belül mindenütt azonos. A külső levegő hőmérséklete minden
magasságban T0, sűrűsége pedig a talaj felett z magasságban ϱ(z) = ϱ0 − αz, ahol α > 0,
z < ϱ0/α.

(a) Mekkora hőmérsékletre kell felmelegíteni a ballonban lévő levegőt, hogy éppen felemel-
kedjen a talajról?

(b) A hőlégballonnal úgy repülnek, hogy a talajon rögzített állapotban T1 hőmérsékletre
melegítik a benne található levegőt, majd bezárják a nyílást, tovább nem melegítik, és
eloldják a rögzítést. Milyen magasra repül így a ballon? Mennyi idő alatt jut ebbe a
magasságba?

5. feladat (12 pont)
A Titkok Kamrájának bejáratához érve Harrynek meg kell határoznia az x-szel jelölt ellen-

állás értékét az ábrán látható elátkozott áramkörben. Csupán két ellenállás értéke ismert, ezek
R1 és R2. Harry tudja azt is, hogy a kérdőjellel jelölt elem egy mágikus feketedoboz, amely
pont úgy néz ki belülről, mint az ábrán látható áramkör (tehát a belsejében van négy ellen-
állás, melyek közül az egyik szintén egy ugyanilyen feketedoboz, amelyben szintén van négy
ellenállás, stb.). A rendszer C és D pontjai közé U0 feszültségű telep van bekötve. Ekkor egy
feszültségmérőt kapcsolva az ábra szerinti A és B pontok közé, szerencsés főhősünk örömmel
látja, hogy a készülék 0 V-ot jelez. Gyors fejszámolás után be is jut a kamrába, és már viszi is
Hagridnak a kolbászt. Mekkora volt x értéke, amit Harry helyesen kiszámolt?

R1 ?

xR2

A

C D

B

Használható segédeszközök: író- és rajzolóeszközök, számológép, függvénytáblázat.
A feladatok megoldására 180 perc áll a csapatok rendelkezésére.
Sikeres versenyzést kívánnak:

a szervezők
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Figyelem! A teljes pontszám eléréséhez nem elegendő a megoldások számszerű közlése, leveze-
tés és a logikai lépések szöveges indoklása is szükséges (pl. „Newton III. törvénye alapján...”)!

1. feladat (13 pont)
Miután Frodó és Samu belevetették az Egy Gyűrűt a Végzet Hegyének katlanába, a mene-

küléshez nem maradt más választásuk, minthogy az α hajlásszögű hegyoldalon lecsorgó láván
utazzanak. Ehhez egy nagy méretű, A alapterületű lapos kőre ugrottak, mely hosszú idő után
állandó U nagyságú sebességgel halad az egyenletes h vastagságú és ϱ sűrűségű lávarétegen,
ahogyan az ábra is mutatja. Miközben Frodóban ismét felderengenek a Megye rég nem látott
képei, Samu elgondolkozik, hogy vajon ki lehetne-e számítani a láva dinamikai viszkozitását a
korábbi paraméterek felhasználásával, amennyiben ismert, hogy a kő és a hobbitok együttes
tömege m. Segítsünk Samunak megoldani a problémát!
Útmutatás: A megoldás során szükségünk lehet rá, hogy egy összenyomhatatlan newtoni fo-
lyadék lamináris áramlása esetében az egyes folyadékrétegek között fellépő (folyadékfelszínnel
párhuzamos) úgynevezett nyíróerő a következő alakban írható egydimenziós, x irányú áramlás
esetében:

Fviszk = µAh
∆u

∆y
,

ahol ∆u a szomszédos rétegek közötti x irányú sebességkülönbség, ∆y a réteg sebességre me-
rőlegesen vett vastagsága, Ah a rétegek közötti határfelület, µ pedig a folyadék dinamikai visz-
kozitása. További hasznos gondolat lehet, hogy állandósult állapotú, lamináris áramlás esetén
a folyadék bármely kis darabja egyensúlyban van.
Megjegyzés: A mordori lávát tekinthetjük az útmutatásban leírt módon jellemezhető folyadék-
nak. A megoldás során a lapos kő lávába történő bemerülését hanyagoljuk el, továbbá feltéte-
lezhetjük, hogy a kő együtt mozog a láva legfelső rétegével.

𝛼 

h

U

m

A
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2. feladat (17 pont)
A düránuszi csillagászok megfigyeltek egy távoli, M tömegű, egyenletes tömegeloszlású ga-

laxist. A galaxis alakja forgástengelye irányában jelentősen lapított, de nem elhanyagolhatóan
lapos forgási ellipszoid, R nagyságú fél nagytengellyel. A galaktikus sík egybeesik a miénk-
kel. A vöröseltolódás-mérések alapján a galaxis két szélén a látóirányú sebességek vA és vB.
Határozzuk meg a csillagászok mérései alapján a galaxis teljes mozgási energiáját!
Útmutatás: Két koncentrikus, hasonló ellipszisre az ábra alapján: AB = CD teljesül.

D

A

C

B

3. feladat (10 pont)
A nagy múltú Roxfort Boszorkány- és Varázslóképző Szakiskola csővezetékeiben a kóborló

baziliszkuszok mellett kevésbé érdekes, azonban „hasonlóan” veszedelmes dolgok is vannak,
például vízkő. A vízkő, bár elsőre ártalmatlannak tűnik, ha lerakódik (például csővezetékekben),
akkor keresztmetszet-csökkenést okoz, ezzel növelve az úgynevezett kavitáció kialakulásának
esélyét. A kavitáció jelensége akkor lép fel, ha a folyadékban a nyomás a telítési gőznyomás alá
kerül (határesetben éppen eléri azt), ekkor ugyanis gőzbuborékok keletkeznek. Ezek a buborékok
tovább haladnak a folyadékkal, magasabb nyomású szakaszra érve hirtelen összeomlanak, ezzel
energiát szabadítva fel és roncsolva a csővezetékek falát. Ezt a jelenséget a varázsvilágban
kevésbé ismerik, így a Ti segítségeteket kérik!

Tekintsük az iskolai melegvíz-hálózat egy, az ábrán látható zárt keringtetőrendszerét. Ebben
az elrendezésben folyamatosan m tömegű, ϱ sűrűségű vizet áramoltatnak u0 tervezett sebesség-
gel, és p0 tervezett nyomáson. A víz melegítését a csőbe épített P teljesítményű elektromos fű-
tőelem biztosítja. Feltételezhetjük, hogy a keringtetett víz hőmérséklete kizárólag a fűtőelemen
áthaladva változik, maga a rendszer tökéletesen hőszigetelt és veszteségmentes. A csővezeték egy
kritikus szakaszán (közvetlenül a fűtőelem után) az eredetileg D0 átmérőjű csőkeresztmetszet
vízkőlerakódás következtében az eredeti keresztmetszeti terület ötödére csökkent. Legfeljebb
mennyi ideig keringtethető a rendszerben a kezdetben T0 hőmérsékletű víz, hogy elkerüljük a
kavitáció kialakulását?
Adatok: m = 500 kg, ϱ = 1000 kg/m3, u0 = 3 m/s, p0 = 150 kPa, P = 20 kW, D0 = 50 mm,
T0 = 20 ◦C, továbbá a víz fajhője cv = 4180 J/kg◦C.

2/4. oldal



Megjegyzés: A „tervezett” sebesség és nyomásértékek az eredeti D0 átmérőjű csővezetékre vo-
natkoznak. A megoldás során feltételezhetjük, hogy a víz összenyomhatatlan folyadék; továbbá
tekintsünk el a folyadék és a csövek hőtágulásától. A keringtetőrendszer pozíciója vízszintes.

A0 /5
A0 u0 

u0 

p0 

vízkő 

P 

4. feladat (10 pont)

R1 ?

xR2

A

C D

B

A Titkok Kamrájának bejáratához érve
Harrynek meg kell határoznia az x-szel jelölt
ellenállás értékét az ábrán látható elátkozott
áramkörben. Csupán két ellenállás értéke is-
mert, ezek R1 és R2. Harry tudja azt is, hogy
a kérdőjellel jelölt elem egy mágikus fekete-
doboz, amely pont úgy néz ki belülről, mint
az ábrán látható áramkör, azzal az egy kü-
lönbséggel, hogy benne minden ellenállásérték
meg van szorozva egy α > 0 konstanssal. Te-
hát a doboz belsejében van négy ellenállás: αR1, αR2, αx, valamint egy hasonló tulajdonságú
doboz, amely szintén α-val szorozza a benne lévő ellenállásokat a körülötte lévőkhöz képest.
Tehát az i. doboz belsejében az ellenállások αiR1, αiR2, αix, és egy doboz. A rendszer C és
D pontjai közé U0 feszültségű telep van bekötve. Ekkor egy feszültségmérőt kapcsolva az ábra
szerinti A és B pontok közé, szerencsés főhősünk örömmel látja, hogy a készülék 0 V-ot jelez.
Gyors fejszámolás után be is jut a kamrába, és már viszi is Hagridnak a kolbászt. Mekkora volt
x értéke, amit Harry helyesen kiszámolt?
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5. feladat (15 pont)
Adott pillanatban egy pontból elindítunk két m tömegű részecskét. Az elsőnek kicsiny q > 0

töltése és v0 kezdősebessége van, a másodiknak 4q töltése és −2v0 kezdősebessége. A részecs-
kékre egyetlen erő hat, mely a kiindulóponttól r0 távolságra lévő rögzített Q < 0 töltéstől
származó elektrosztatikus kölcsönhatás. Legkorábban mennyi idő múlva találkoznak, ha az első
részecske periódusideje T?
Megjegyzés: A megoldás során a kicsiny töltések közötti elektrosztatikus kölcsönhatást hanya-
goljuk el.

Használható segédeszközök: író- és rajzolóeszközök, számológép, függvénytáblázat.
A feladatok megoldására 180 perc áll a csapatok rendelkezésére.
Sikeres versenyzést kívánnak:

a szervezők
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1. feladat
Legyen a test sebessége v, amikor éppen elhagyja a körívet. A kezdeti energia megegyezik

eddig a pontig a kinetikus energia és a potenciális energia megváltozásának összegével:
1
2mv2

0 = 1
2mv2 + mgR(1 + cos α). (1.1)

Innen a sebesség négyzetét kifejezve:

v2 = v2
0 − 2gR(1 + cos α). (1.2)

A feladatból adott, hogy:
v2

0 = kgR, (1.3)
így az előző két egyenlet alapján:

v2 = gR [k − 2 (1 + cos α)] . (1.4)

A körív két végpontja közti mozgás egy ferde hajítás, amelynek kezdősebessége v nagyságú,
és α szöget zár be a vízszintessel. A hajítás során megtett vízszintes távolság a feladat szerint
éppen megegyezik a rés szélességével:

v2 sin 2α

g
= 2R sin α. (1.5)

Behelyettesítve (1.4) eredményét, és kihasználva a kétszeres szögek azonosságát:

gR [k − 2(1 + cos α)] · 2 sin α cos α

g
= 2R sin α. (1.6)

Mivel 0◦ < α < 90◦, ezért sin α ̸= 0, tehát oszthatunk vele:

[k − 2 (1 + cos α)] cos α = 1. (1.7)

Ez cos α-ban egy másodfokú egyenlet, nullára rendezve

2 cos2 α − (k − 2) cos α + 1 = 0 (1.8)

adódik, melynek megoldásai a megoldóképlet alapján:

cos α =
k − 2 ±

√
(k − 2)2 − 8
4 . (1.9)

(a)
Ez esetben k = 5, vagyis

cos α = 3 ± 1
4 . (1.10)

A cos α = 1 esethez α = 0 tartozik, amely nem megengedett, így cos α = 1/2, tehát:

α = 60◦ . (1.11)
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(b)
Látható, hogy az (1.9) kifejezés akkor értelmezhető, ha:

(k − 2)2 − 8 ≥ 0, (1.12)

vagyis
k ≥ 2 +

√
8 = 2 + 2

√
2, (1.13)

avagy
2 −

√
8 ≥ k. (1.14)

Az utóbbi egyenlőtlenség nyilvánvalóan nem teljesülhet, mivel k pozitív. Tehát k minimális
értéke a fentiek szerint:

kmin = 2 + 2
√

2 , (1.15)
ekkor (1.9) alapján:

cos α = 1√
2

, (1.16)

ennek megoldása pedig:
α = 45◦ . (1.17)

2. feladat
A lendületmegmaradást felírva:

mv0 = 3mvTKP, (2.1)

ahonnan a tömegközéppont sebessége:

vTKP = v0

3 . (2.2)

LL

x

TKP

2.1. ábra. A rendszer egy későbbi állapota.

Tehát kezdetben a tömegközéppont lassabb,
mint a középső test, így távolodik tőle. Ez nyil-
ván azért történik, mert a két szélső test „lema-
rad” a középsőhöz képest. Mivel a kötelek végig
feszesek, így a három test által meghatározott
háromszögnek két oldala L hosszú, a harmadik
oldal hosszát pedig jelölje x, ahogy a 2.1. ábra
is mutatja. A feladat meghatározni x legkisebb
értékét.

Figyeljük meg, hogy amíg x csökken, addig a háromszög súlypontja (ami a rendszer tömeg-
középpontja) távolodik a középső testtől. Abban a pillanatban, ahogy x eléri a minimumát, ez
a távolodás abbamarad, tehát a tömegközéppont rendszeréből nézve éppen ekkor lesz a középső
test sebessége nulla. Ez azt jelenti, hogy ekkor ez a test v0/3 sebességgel fog haladni. Ekkor
viszont a másik két test is v0/3 sebességgel halad, hiszen a rendszer szimmetrikus, így ez a
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két test mindig ugyanakkora sebességgel mozog. Észrevehetjük azt is, hogy ebben a kritikus
pillanatban minden sebességvektor párhuzamos v0-al.

Most írjuk fel az energiamegmaradást x legkisebb értékére (azaz a kritikus pillanatban):

1
2mv2

0 + 2k
Q2

L
+ k

Q2

2L
= 3

2mv2
TKP + 2k

Q2

L
+ k

Q2

x
. (2.3)

Látható, hogy a szélső golyók és a középső golyó közötti potenciális energia nem változik, hiszen
a kötelek hossza is változatlan. Felhasználva továbbá vTKP értékét:

1
3mv2

0 + 1
2k

Q2

L
= k

Q2

x
, (2.4)

innen

x = 6LkQ2

3kQ2 + 2Lmv2
0

. (2.5)

3. feladat

(a)
Vizsgáljunk először csak egy lapátot, hiszen a homogén légáramlat (szél) miatt minden lap

ugyanakkora forgatónyomatékot fog generálni. Egy lap keresztmetszete az áramlás irányára
nézve:

A = Ld cos φ. (3.1)
A lapátra ható merőleges irányú légellenállási erő nagysága:

Fm = 1
2Aϱv2

0Cm(φ) = 1
2Aϱv2

0(a − bφ2). (3.2)

A lapáttal párhuzamos erő nagysága:

Fp = 1
2Aϱv2

0Cp(φ) = πAϱv2
0φ. (3.3)

Koordináta-rendszerünket vegyük fel úgy, hogy origója a lapát közepe legyen, az x tengely
mutasson a szél irányába, a z tengely a lapát rögzítése felé, az y pedig a forgás síkjába. Így a
lapátra ható y irányú erő:

Fy = Fm sin φ − Fp cos φ. (3.4)
Behelyettesítve a (3.2) és (3.3) egyenleteket:

Fy = Aϱv2
0

[
(a − bφ2) sin φ

2 − πφ cos φ

]
. (3.5)

Mivel páros sok lapátból áll a szélkerék, így az x irányú erők forgatónyomatékai kioltják
egymást, elég az y irányú erők forgatónyomatékát vizsgálni, ez a (b) részben már nem igaz.

M = L

2 Fy. (3.6)
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Ez az x irányba mutat, tehát a szélre merőleges síkban forgat.
Minden lapátra ugyanez írható fel, így a teljes forgatónyomaték N -szer ekkora lesz. Behe-

lyettesítve a (3.1) egyenletből A értékét:∑
M = N

L

2 Ld cos φ · ϱv2
0

[
(a − bφ2) sin φ

2 − πφ cos φ

]
. (3.7)

Felhasználhatjuk, hogy kis szögek esetén sin φ ≈ φ, cos φ ≈ 1, így:∑
M ≈ N

L

2 Ldϱv2
0

[
(a − bφ2)φ

2 − πφ

]
. (3.8)

Továbbá a φ3-bel arányos tag elhanyagolhatóan kicsi, így a végeredmény:
∑

M = 1
4NL2dϱv2

0 (a − 2π) φ . (3.9)

Jól látható, hogy a való világban épült szélerőművek lapátjai miért sokkal hosszabbak, mint
amilyen szélesek. A fenti képletben a lapát hossza négyzetesen, a szélessége csak lineárisan
szerepel.

(b)
Ebben az esetben is ugyanakkora lesz az y irányú erő, mint az (a) részben, azonban a lapátra

ható x irányú (széllel párhuzamos) erőnek is lesz forgatónyomatéka, amit semmi nem „egyenlít
ki”. Az a probléma ezzel az aszimmetrikus elrendezéssel, hogy a tengelyt terhelő, y irányú eredő
forgatónyomaték is lesz. A lapra ható x irányú erő:

Fx = Fm cos φ + Fp sin φ. (3.10)
Behelyettesítve az (a) részben írt erőket:

Fx = Aϱv2
0

[
(a − bφ2) cos φ

2 + πφ sin φ

]
. (3.11)

Innen az y irányú forgatónyomaték:

My = L

2 Fx = 1
2L2d cos φϱv2

0

[
(a − bφ2) cos φ

2 + πφ sin φ

]
. (3.12)

Ismét felhasználva az (a) részben írt közelítéseket:

My ≈ 1
4L2dϱv2

0a . (3.13)

Az x irányú forgatónyomaték változatlan a korábbi esethez képest, így

Mx = 1
4L2dϱv2

0 (a − 2π) φ . (3.14)

Egy másik probléma ezzel az elrendezéssel, hogy ha a lapát éppen lent van, akkor sokkal nagyobb
forgatónyomaték szükséges, hogy egyáltalán mozgásba jöjjön, és utána is nagyon egyenetlen lesz
a forgás sebessége.
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4. feladat

(a)
A ballon akkor száll fel, amikor a felhajtóerő nagyobb lesz, mint a ballonra ható nehézségi

erő. Előbbi:
Ff = ϱ0V g, (4.1)

a nehézségi erő pedig:
Fg = (m0 + ϱaV )g. (4.2)

Itt ϱa jelöli a hőlégballonban található levegő sűrűségét. A kritikus pillanatban a testre ható
erők egyenlőek, tehát:

ϱ0V = m0 + ϱaV. (4.3)
Innen a kritikus pillanatban a sűrűség:

ϱa = ϱ0 − m0

V
. (4.4)

A hőlégballonban található levegőre az ideális gázok állapotegyenletét felírva:

pkV = n1RTa. (4.5)

Itt felhasználtuk, hogy a hőlégballonban található gáz nyomása a külső légnyomással egyezik
meg, hiszen a légcsere megengedett a két közeg között. A hőmérséklet a kritikus pillanatban
Ta. Innen ezt a gáz sűrűségével kifejezve:

Ta = Mpk

Rϱa

. (4.6)

Ide behelyettesítve a (4.4)-ben kapott eredményt:

Ta = Mpk

R
· V

ϱ0V − m0
. (4.7)

Ezt átalakítva:
Ta = ϱ0V

ϱ0V − m0
T0 . (4.8)

(b)
A talajszinten a légnyomás ballonon belül és kívül azonos, így érdemes mindkét gáztérben

felírni a nyomást. A ballonon kívül:
p0 = ϱ0

RT0

M
, (4.9)

a ballonon belül pedig:
p0 = ϱ1

RT1

M
. (4.10)
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Innen a belső sűrűség kifejezhető a hőmérsékletekkel:

ϱ1 = ϱ0
T0

T1
. (4.11)

A ballonra mindig a felhajtóerő és a nehézségi erő eredője fog hatni. Előbbinek a nagysága
z magassággal a talaj felett:

Ff(z) = ϱk(z)V g. (4.12)

A nehézségi erő pedig állandó nagyságú:

Fg = (m0 + ϱ1V )g. (4.13)

Az eredő erő: ∑
F (z) = ϱk(z)V g − (m0 + ϱ1V )g. (4.14)

Behelyettesítve a feladatban megadott ϱk(z) értéket:∑
F (z) = −αV gz + (ϱ0V − m0 − ϱ1V )g. (4.15)

Láthatjuk, hogy az eredő erő utolsó tagja konstans, az első pedig z-vel egyenesen arányos, a
kitérés irányával ellentétes irányú. Mivel a teljes tömeg állandó, ebből tudjuk, hogy a hőlégbal-
lon harmonikus rezgőmozgást fog végezni valamilyen z0 egyensúlyi helyzet körül –ha felszáll–
akárcsak egy rugóra akasztott test. A z0 magasságban az eredő erő zérus lesz:

αV z0 = ϱ0V − ϱ1V − m0. (4.16)

Innen az egyensúlyi z0 magasság:

z0 = 1
α

(
ϱ0 − ϱ1 − m0

V

)
. (4.17)

A maximális magasság ennek a kétszerese lesz. Felhasználva (4.11)-et:

zmax = 2
α

[
ϱ0

(
1 − T0

T1

)
− m0

V

]
. (4.18)

A keresett időt a rezgés periódusidejéből kapjuk. Ehhez a (4.15)-ös egyenletből fejezzük ki
a hőlégballon gyorsulását:

a(z) = − αV g

m0 + ϱ1V
· z + ϱ0V g − ϱ1V g − m0g

m0 + ϱ1V
. (4.19)

A rugóra akasztott test analógiájából tudjuk, hogy az első tag −ω2z-vel feleltethető meg, ahol
ω a rezgés körfrekvenciája. Ezt felírva:

ω =
√

αV g

m0 + ϱ1V
. (4.20)
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Innen a periódusidő:

T = 2π

√
m0 + ϱ1V

αV g
. (4.21)

A maximális magasság eléréséig eltelt idő ennek a fele lesz. Felhasználva (4.11)-et:

t1 = π

√
m0T1 + ϱ0V T0

αV gT1
. (4.22)

5. feladat
A teljes áramkör ellenállását jelölje R. Ekkor nyilván a kérdőjellel jelölt doboz ellenállása is

R, így felírható, hogy
1
R

= 1
R1 + R

+ 1
R2 + x

, (5.1)

ahonnan átrendezés után
x = R1R + R2 − R1R2

R1
(5.2)

adódik. Mivel a feszültségmérő 0 V-ot jelez, így

R1

R2
= R

x
, (5.3)

amelybe az (5.2) egyenlet szerint x-et helyettesítve:

R2 + R(R1 − R2) − R1R2 = 0. (5.4)

A másodfokú egyenletet megoldva a két megoldás R2 és −R1, de mivel R pozitív (ahogy R1
és R2 is), így az egyetlen fizikai megoldás

R = R2. (5.5)

Ezt az (5.2) egyenletbe helyettesítve kapjuk a végeredményt:

x = R2
2

R1
. (5.6)
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1. feladat
Mivel a feladat szerint „hosszú idő után” a kő állandó nagyságú sebességgel halad a lej-

tő síkjával párhuzamosan, feltételezhetjük, hogy a láva áramlása már állandósult, és csak a
lejtő irányával párhuzamos sebességkomponenssel rendelkezik. Tehát minden folyadékdarabka,
valamint a kő is egyenes vonalú egyenletes mozgást végez, a rá ható erők eredője zérus.

A lejtő irányával párhuzamosan felírva a kőre a dinamika alapegyenletét:

mg sin α = Ff, (1.1)

ahol Ff a kő aljára ható, folyadéktól származó erő (mely egy, a „tapadási súrlódáshoz” hason-
ló jellengű erőként is elképzelhető, hiszen a felső réteg és a kő együtt mozognak); a feladat
nehézsége ennek meghatározásában rejlik.

Az útmutatásban leírt ötletet alkalmazva bontsuk a lávát vékony rétegekre a lejtő síkjával
párhuzamosan és vizsgáljuk egy-egy ilyen kicsiny vastagságú réteg mozgását!

ui

u1

F
i

F
0

F
1

F
N

F
N-1

F
i-1

1.

i.

x

y

N.

i-1. ...

...

...

...

uN-1

ui-1

F
i-2

uN

1.1. ábra. A láva kicsiny rétegekre bontása.

Legyen az egyenlő vastagságú rétegek száma N , ekkor egy réteg vastagsága ∆y = h/N .
Jelölje az i-edik kicsiny réteg lejtővel párhuzamos sebességét ui. Ekkor az i-edik folyadékréteg
tetején (pozitív y) fellépő nyíróerő:

Fi = µA
ui − ui−1

∆y
. (1.2)

Mivel a folyadék is állandósult állapotban van, minden kis rétegnek egyensúlyban kell lennie.
Az i-edik rétegre felírva az erőegyensúlyt a lejtővel párhuzamosan:

Fi−1 − Fi = ϱA∆yg sin α =⇒ Fi = Fi−1 − ϱA∆yg sin α. (1.3)

A fenti egyenlet egy rekurzív képletet ad az egyes határfelületeken fellépő nyíróerőre, ezt meg-
oldva Fi-re a következő összefüggés adódik:

Fi = F0 − iϱA∆yg sin α, (1.4)
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ahol F0 a talajról átadódó erő. Felhasználva (1.1)-et, az N -edik erőre a következő egyenlet írható
fel:

FN = Ff = mg sin α = F0 − NϱA∆yg sin α. (1.5)
Kihasználva, hogy ∆yN = h:

mg sin α = F0 − ϱAhg sin α, (1.6)
azaz a talajról átadódó erő:

F0 = mg sin α + ϱAhg sin α. (1.7)
A legfelső réteg (azaz a kő) állandósult sebességét a kicsiny folyadékrétegek között bekövet-

kező „sebességugrások” összege adja:

U =
N∑

i=1
(ui − ui−1), (1.8)

amely az (1.2) egyenlet alapján:

U =
N∑

i=1

∆y

µA
Fi. (1.9)

Behelyettesítve (1.4)-et:

U = ∆y

µA

N∑
i=1

(F0 − iϱA∆yg sin α) , (1.10)

majd felbontva az összegzést az állandó tagokat kihozva:

U = ∆y

µA

(
NF0 − ϱA∆yg sin α

N∑
i=1

i

)
. (1.11)

A megmaradt összegzés éppen a pozitív egész számok összege 1-től N -ig, melyre használhatjuk
a jól ismert N(N + 1)/2 összegképletet:

U = ∆y

µA

(
NF0 − ϱA∆yg sin α

N(N + 1)
2

)
. (1.12)

Ismét felhasználva, hogy ∆yN = h:

U = h

µA

(
F0 − ϱAhg sin α

N + 1
2N

)
. (1.13)

Behelyettesítve (1.7)-et és csoportosítva a tagokat:

U = mgh sin α

µA
+ h2ϱg sin α

µ

(
1 − N + 1

2N

)
= mgh sin α

µA
+ h2ϱg sin α

µ

N − 1
2N

. (1.14)

A diszkrét modellünk az N → ∞ esetben adja vissza a folytonos folyadékot. Ekkor az N -t
tartalmazó tört határértéke 1/2, azaz a kapott összefüggés:

U = mgh sin α

µA
+ h2ϱg sin α

2µ
. (1.15)

A fenti kifejezésben már csak a keresett dinamikai viszkozitás az ismeretlen, erre rendezve:

µ = h sin α

U

(
mg

A
+ ϱgh

2

)
. (1.16)
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2. feladat
Először belátjuk, hogy – a gömb esetével analóg módon – ha egy tömör ellipszoidot hasonló

ellipszoidok által határolt héjakra bontunk, egy belső pont csak a belső héjak gravitációs hatását
érzi. Tekintsünk egy tetszőleges P pontot az üreges, vékony héj belsejében, és vegyünk két
ellentétes irányú, kis ∆Ω térszögű kúpot. A kúpok a héjból ∆A1 és ∆A2 felületdarabokat
metszenek ki r1 és r2 távolságokban. A térszög definíciója alapján ∆Ai = r2

i ∆Ω. Mivel a
héjat határoló felületek hasonlóak és koncentrikusak, geometriai tétel, hogy a héj vastagsága
látóirányban mérve a két oldalon megegyezik (AB = CD a 2.1. ábrán). A kivágott tömegek
aránya tehát csak a távolságok négyzetével arányos (∆m ∼ r2), ami éppen kiejti a gravitációs
erő 1/r2-es csökkenését. Így a két szemközti felületelem vonzása semlegesíti egymást.

D
C

P
B

A

2.1. ábra. A geometriai tétel illusztrációja a tárgyalt elrendezésben.

A P pontban az összes rajta kívül eső héj gravitációs hatása nulla, mivel az előző érvelés
tetszőleges irányra alkalmazható. Azaz a P pont térerősségét kizárólag a ponton átmenő, az
eredetivel hasonló belső ellipszoid határozza meg. Tehát egy tetszőleges r helyvektorral jelle-
mezhető pontban a gravitációs térerősség:

g(r) = −Gϱ
∫

Vr

r − x

|r − x|3
dV, (2.1)

ahol x a térfogati integrál változója.
Végezzünk el egy λ-szorosára történő nagyítást a teljes rendszeren. Ezzel egy hasonló, de más

méretű ellipszoidot kapunk. A pozícióvektorok r′ = λr, x′ = λx és a térfogatelem dV ′ = λ3dV
transzformációja után az integrálból λ kiemelhető. Ekkor arra jutunk, hogy g(λr) = λg(r),
vagyis a térerősség lineárisan függ a helyvektortól.

Felhasználva a galaxis laposságát, jó közelítéssel minden mozgás a galaxis síkjában törté-
nik. Ekkor a gravitációs erő galaktikus síkba eső komponense biztosítja az anyag centripetális
gyorsulását, így:

mg(r) = mω2r. (2.2)
Mivel a gravitációs térerősség lineáris, következik, hogy a galaxis merev testként forog, állandó
ω szögsebességgel:

v(r) = ωr. (2.3)
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A mozgási energia kiszámításához szükségünk van a rendszer tehetetlenségi nyomatékára és a
kinematikai adatokra. A tömegközépponti (vTK) és a kerületi (vker) sebességek a mért adatokból:

vTK = vA + vB

2 , vker = ωR = vA − vB

2 . (2.4)

A forgási ellipszoid z forgástengelyére vonatkozó tehetetlenségi nyomatéka megegyezik egy R
sugarú, M tömegű homogén gömbével, mivel a z irányú lapítás nem változtatja meg a tö-
megelemek forgástengelytől mért távolságát, tehát Θ = 2MR2/5. A teljes mozgási energia a
tömegközéppont haladásából és az akörül történő forgásból adódik össze:

Ekin = 1
2Mv2

TK + 1
2Θω2

= 1
2M

(
vA + vB

2

)2
+ 1

2

(2
5MR2

)(
vA − vB

2R

)2
. (2.5)

Egyszerűsítés után a végeredmény:

Ekin = M

8 (vA + vB)2 + M

20 (vA − vB)2 . (2.6)

D

C
P

B

A

Ax

Dx

D′

C ′
P ′B′

A′

A′
x D′

x

2.2. ábra. A felhasznált geometriai té-
tel bizonyítása egy affin transzformá-
ció segítségével.

Megjegyzés
Hogy teljesebb képet kapjunk, az alábbiakban ki-

térünk a feladat útmutatásában megadott és a meg-
oldás során felhasznált geometriai tétel bizonyítására.
Tekintsük ehhez a 2.2. ábrán látható affin transzformá-
ciót, amely két koncentrikus kört az esetünkben vizsgált
koncentrikus ellipszisekbe visz át.

Metsszük el az eredeti kört egy tetszőleges P bel-
ső ponton áthaladó egyenessel, ekkor a metszéspontok
rendre A, B, C és D. Legyen továbbá az A pontnak az
affinitás irányában B-vel egy magasságba vetített képe
Ax. Hasonlóan definiálhatjuk a Dx pontot is. A fenti
pontok képei az affin transzformáció után A′, B′, C ′,
D′, A′

x és D′
x.

A kör szelőire könnyen látható, hogy AB = CD, to-
vábbá AxB = CDx és AxA = DxD. Az affinitás irányá-
val párhuzamos szakaszok hossza a transzformáció ha-
tására λ-szorosára csökken, míg a merőleges szakaszok
hossza változatlan. Így AxB = CDx = A′

xB′ = C ′D′
x,

illetve λAxA = A′
xA′ és λDDx = D′D′

x. Mindezekből
a Pitagorasz-tétel felhasználásával könnyedén adódik a
kívánt végeredmény: A′B′ = C ′D′.
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3. feladat
A feladatban közölt leírás alapján a kavitáció jelenségének szempontjából kritikus szakasz a

beszűkült keresztmetszet. Itt ugyanis a kontinuitás törvénye alapján az áramlási sebesség hirte-
len növekszik, ez pedig a Bernoulli-törvény értelmében a nyomás hirtelen csökkenését eredmé-
nyezi, ami éppen a kavitáció kiváltó oka. Elsőként tehát határozzuk meg a kavitációhoz tartozó
kritikus gőznyomás értékét!

A beszűkült keresztmetszetben az áramlási sebesség (kontinuitás alapján, összenyomhatat-
lan folyadékot feltételezve):

A0u0 = A0

5 u1 =⇒ u1 = 5u0. (3.1)

Bernoulli-törvényét felírva egy a szűkület előtti és a szűkületbeli pontra:

p0 + 1
2ϱu2

0 = p1 + 1
2ϱu2

1 =⇒ p1 = p0 + 1
2ϱ(u2

0 − u2
1), (3.2)

majd a (3.1) egyenletet felhasználva a szűkületbeli nyomás:

p1 = p0 − 12ϱu2
0 = 42 kPa. (3.3)

Kavitáció abban az esetben történik, ha a telített gőznyomás eléri a fentiekben kiszámolt nyo-
másértéket, azaz pkav = p2 = 42 kPa. A mellékelt telített gőznyomás–hőmérséklet grafikon
alapján az ehhez tartozó hőmérséklet: Tkrit ≈ 76 ◦C.

Mivel a feladatban közölt ábra alapján a fűtőelem éppen a kritikus keresztmetszet előtt
helyezkedik el, ezért a kavitáció jelensége akkor lépne fel, mikor az első, fűtőelemből kilépő
folyadékdarabka hőmérséklete eléri Tkrit értékét. Tehát a teljes folyadéknak nem kell Tkrit
hőmérsékletre melegednie!

Határozzuk meg, hogy a fűtőelemen áthaladva mennyivel növekszik a víz hőmérséklete!
Ehhez elsőként írjuk fel a tervezett paraméterek mellett kialakuló a tömegáramot:

ṁ = ϱ
D2

0π

4 u0. (3.4)

Ezt felhasználva a hőmérséklet-növekedés:

∆Tf = P

cvṁ
= 4P

πcvϱu0D2
0

= 0,81 ◦C, (3.5)

tehát a teljes víztömegnek ennyivel kisebb hőmérsékletet kell elérnie a kritikushoz képest, hogy
a kavitáció kialakulhasson. A szükséges hőközlés:

Q = cvm∆T = cvm(Tkrit − ∆Tf − T0). (3.6)
Ez alapján a melegítés időtartama a megadott fűtőteljesítményt felhasználva:

t = Q

P
= cvm(Tkrit − ∆Tf − T0)

P
, (3.7)

a numerikus értékeket behelyettesítve:

t = 5767 s ≈ 96 min . (3.8)
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4. feladat
A legkülső (ábrán is látható) feketedoboz ellenállását jelölje R3. Vegyük észre, hogy a teljes

rendszer mindössze annyiban különbözik ennek a doboznak a belsejétől, hogy ez utóbbiban
minden ellenállás α-szorosa az eredeti áramkör ellenállásértékeinek. Tehát míg az eredeti rend-
szer i. szintjén a bal felső ellenállás αi−1R1, addig a doboz i. szintjén ugyanez az ellenállás αiR1.
A Kirchhoff- és Ohm-törvények linearitása miatt ez azt jelenti, hogy

R3 = αRe, (4.1)

ahol Re a teljes rendszer eredő ellenállását jelenti a C és D pontok között. A felső ágban sorosan
kapcsolódik R1 és R3, míg az alsó ágban R2 és az ismeretlen x. Ennek megfelelően a felső, illetve
alsó ág eredő ellenállása:

Rf = R1 + R3, (4.2)

Ra = R2 + x. (4.3)

Az A és B pontok ekvipotenciálisak, vagyis a két pont közötti feszültség zérus. Ez azt jelenti,
hogy a felső és alsó ágban azonos arányban oszlik meg a feszültség. Ezért a feszültségosztásra
az alábbi összefüggés írható fel:

R1

Rf
= R2

Ra
. (4.4)

A definíciókat behelyettesítve:
R1

R1 + R3
= R2

R2 + x
. (4.5)

Az egyenletet x-re rendezve:
x = R2

R1
R3. (4.6)

A teljes áramkör eredő ellenállása a két ág párhuzamos kapcsolásából adódik:

Re = RfRa

Rf + Ra
. (4.7)

A (4.5) összefüggés szerint
Ra = R2

R1
Rf , (4.8)

amit behelyettesítve (4.7)-be, egyszerűsítés után:

Re = R2

R1 + R2
Rf (4.9)

adódik, amibe (4.2)-t és (4.1)-et helyettesítve:

R3 = α
R2

R1 + R2
(R1 + R3). (4.10)
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Az egyenletet R3-ra megoldva:
R3 = αR1R2

R1 + R2(1 − α) . (4.11)

Ebből, valamint a (4.6) összefüggésből a keresett x ellenállás:

x = αR2
2

R1 + R2(1 − α) . (4.12)

5. feladat

1. megoldás
A feladat megoldásához azt kell megérteni, hogyha egy test végigmegy egy pályán, és egy

másik kétszer olyan gyorsan megy végig ugyanazon a pályán, akkor az utóbbi sebessége kétszer,
gyorsulása négyszer akkora lesz, mint az előbbié.

Ehhez először nézzük meg, hogy mi történne, ha ugyanabba az irányba lőnénk ki külön a
részecskéket, de a másodikat az elsőnél kétszer nagyobb sebességgel. Írjuk fel a mozgásegyenle-
teket:

mr̈1 = k
Qq

|r1|3
r1, mr̈2 = k

4Qq

|r2|3
r2. (5.1)

Tegyük fel, hogy az első egyenlet megoldása r1. Vegyük észre, hogy ekkor az r2(t) = r1(2t) hoz-
zárendeléssel megadott r2 függvény megoldása lesz a második egyenletnek. Ennek igazolásához
először vizsgáljuk meg a gyorsulások viszonyát a deriválás láncszabálya szerint:

r̈2(t) = 4r̈1(2t). (5.2)

Az első, r1-re vonatkozó mozgásegyenletet behelyettesítve:

mr̈2(t) = 4mr̈1(2t) = 4k
Qq

|r1(2t)|3 r1(2t) = k
4Qq

|r2(t)|3
r2(t). (5.3)

Ebből tehát látható, hogy a fent definiált r2 valóban kielégíti a második mozgásegyenletet. Így
ha az egyik részecske végigmegy valamilyen tetszőleges pályán, akkor elviekben a másik test is
végig tud menni ugyanazon pályán, kétszer olyan gyorsan.

De mi határozza meg, hogy milyen pályán mozog a test? A kezdőfeltételek! Tegyük fel, hogy
az első test kezdőfeltételei r1(0) = r1(t = 0) és ṙ1(0) = ṙ1(t = 0). Ekkor észrevehetjük, hogy
r2(t) = r1(2t) illeszthető a második test kezdőfeltételeihez, mivel:

r2(0) = r1(0), ṙ2(0) = 2ṙ1(0). (5.4)

Tehát a két test valóban ugyanazon a pályán fog mozogni, csak a második kétszer olyan gyorsan,
mint az első.

Innen már csak azt kell végiggondolni, hogy min változtat az, hogy a második testet az
ellenkező irányba lőjük ki. Csak annyit, hogy ugyanazon pályán az ellenkező irányba fog haladni.
A fentiek alapján tehát a megtett utak aránya 1 : 2, és a testek akkor találkoznak, amikor a
kettejük által megtett út összege kiadja a teljes pályát. Ez a pálya egyharmadánál lesz, azaz
T/3 idővel az indítás után.

7/9. oldal



2. megoldás
A megoldás első lépéseként használjuk ki, hogy egy tetszőleges q > 0 töltés pályája egy

rögzített Q < 0 töltés körül olyan ellipszis, melynek a fél nagytegelye és a q töltés teljes Et
energiája közti összefüggés:

Et = kQq

2a
. (5.5)

Ezt felhasználva a feladat q töltésére:

1
2mv2

0 + kQq

r0
= kQq

2aq

, (5.6)

míg a másik kis töltésre:
1
2m(2v0)2 + 4kQq

r0
= 4kQq

2a4q

. (5.7)

Az (5.6) és (5.7) egyenleteket összehasonlítva látszik, hogy utóbbiban egy néggyel való egysze-
rűsítés után aq = a4q adódik, azaz a két mozgó töltés pályájának fél nagytengelye ugyanakkora.
Mivel a kiinduláskor a két töltés egy pontból indul ellentétes irányú sebességgel, így a pályájuk
érintője egyezik és tudjuk, hogy a pályák fókuszpontja és fél nagytengelye is ugyanaz. Ebből
következik, hogy a két test egy pályán mozog1, ahogy az 5.1. ábrán látható.

5.1. ábra. A töltések kiinduló elrendezése és pályája.

Az energiamegmaradás egyenletét a pálya tetszőleges pontjára felírhatjuk. Az (5.6) és (5.7)
közti 4-es szorzó miatt egy adott pontban a 4q töltés mindig kétszer akkora sebességgel halad,
mint a q töltésű test haladna azon pontban. Ezáltal a 4q töltés periódusideje T/2. (Ez Kepler
III. törvényének megfelelő alkalmazásával is adódik.)

1Bár az állítás nem teljesen triviális, röviden belátható annak ismeretében, hogy egy ellipszis adott pontjából
két fókuszához húzott vezéregyenesek szögfelezője merőleges az ellipszis érintőjére. Konkrétabban, mivel a Q
töltés helye, mint fókuszpont és a fél nagytengely adott, az egyetlen szabadsági fokunk a másik fókuszpont
helyzete. Ennek különböző megválasztásai esetén a fent említett szögfelező más és más irányú, így az arra
merőleges érintők is. Összességében tehát egyedül akkor eshet egybe a két pálya érintője, ha azok második
fókuszai, és így a teljes ellipszisek is azonosak.
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Összefoglalva, a két töltés ugyanazon pályán halad ellentétes irányban, és az egyik területi
sebessége minden pillanatban duplája a másikénak, tehát a töltések azon pontban találkoznak
újra, ahol 1:2 arányban súrolták az ellipszis területét. Ide pedig T/3 idő elteltével jutnak el az
indulástól mérten.
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Figyelem! A teljes pontszám eléréséhez nem elegendő a megoldás számszerű közlése, a mérés
lépéseit tartalmazó jegyzőkönyv és a végeredmény hibájára vonatkozó becslés is szükséges!

A mérés célja
A mérés során egy Bunsen-állványra akasztott matematikai inga lengését vizsgáljuk külön-

böző damilhosszak mellett. A damil hosszának a lengésidőhöz képest lassú változtatása esetén
bizonyos mennyiségek megmaradnak a mozgás során, ezek meghatározása a célunk.

Elméleti bevezető
A matematikai inga egy elhanyagolható tömegű, ℓ hosszúságú fonalra függesztett, m tömegű

pontszerű testből áll, amelyre szabad erőként csak a nehézségi erő hat. Az inga nyugalmi hely-
zetéhez képest egy adott időpillanatban a függőlegessel bezárt szöget nevezzük szögkitérésnek
(φ). Kis szögek esetén az inga elmozdulását vízszintessel közelítjük, és egy adott magasságban
a vízszintes kitérést (x) vizsgálhatjuk. Ennek maximuma az amplitúdó (A).

Mérési eszközök
A mérés során rendelkezésünkre áll egy Bunsen-állvány, melynek rúdjához egy gyűrű van

rögzítve. Adott még egy vékony damil, illetve két nehezék, melyekből a damilt a gyűrűn átvetve
inga készíthető. Rendelkezésre áll egy szigetelőszalag a damil jelöléséhez, emellett adott egy
vonalzó, mellyel a kitérés amplitúdója mérhető és egy milliméterpapír az ábrázoláshoz.

Elméleti feladatok

1. feladat (6 pont)
Tekintsük a fent ismertetett matematikai ingát, amely a t = 0 pillanatban φmax ≪ 1 rad

szögkitéréssel, nyugalomból indul. A rendszer paramétereinek lassú változtatása esetén defi-
niálható egy I fizikai mennyiség, az adiabatikus invariáns, amely a mozgás során közelítőleg
állandó. Ennek alakja a kis kitérésű fonálinga esetén

I = mg1/2ℓ2αφ2
max,

ahol α egy alkalmasan választott kitevő. A fenti megmaradási tételt felhasználva vezessük le a
maximális szögkitérés logaritmusa és az inga hosszának logaritmusa közti

ln (φmax) = 1
4 ln

(
I2ℓ4α

0
m2g

)
− α ln

(
ℓ

ℓ0

)

összefüggést! Itt ℓ0 a fonál kezdeti hosszát jelöli, de helyettesíthető lenne bármilyen más hosszú-
ságdimenziójú paraméterrel is.
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Mérési feladatok

2. feladat (5 pont)
Kezdésként a szigetelőszalagból levágott apró darabok segítségével 10 cm-es beosztással je-

löljük meg a damilnak kb. 1 m-es szakaszát, majd készítsük el az ingát, a Bunsen-állványt
az asztal szélére helyezve. A damil egyik végére kössük rá a súlyt, másik végét vessük át az
állvány rúdján és tartsuk kézben, hogy a hosszát változtatni lehessen. A feladat során végig
kis kitéréseket használjatok, és óvatosan változtassátok a damil hosszát, ne vágjátok el a
kezetek!

Állítsuk az inga hosszát a lehető legnagyobbra, majd mérjük meg ekkor a lelógó damil
hosszát (ℓ0). Ezután térítsük ki az ingát, és a vonalzó segítségével az asztal magasságában
olvassuk le a lengés amplitúdóját (A). Lassan rövidítve a damil hosszát, olvassuk le a jelölések
segítségével, hogy különböző ingahosszakhoz mekkora amplitúdók tartoznak, ezeket jegyezzük
fel a mellékelt táblázatba! Számoljuk ki a teljes lengési hosszt minden adatpontnál, illetve a
maximális szögkitérés tangensét, majd a maximális szögkitérést!

3. feladat (10 pont)
Végezzük el a 2. feladat lépéseit úgy, hogy a legrövidebb lehetséges damilhosszal kezdünk,

és folyamatosan növeljük az inga hosszát! Ezután ismételjük meg még egyszer ezt, vagy a 2.
feladat lépéseit, ezt a döntést a csapatra bízzuk.

4. feladat (14 pont)
Az 1. feladat alapján az adatokat a megfelelő koordináta-rendszerben ábrázolva egyenes il-

leszthető az adatpontokra. Számoljuk ki a szükséges mennyiségeket, majd ábrázoljuk így a mé-
rési eredményeinket. A három mérési sorozat eredményeit egy milliméterpapíron szemléltessük,
különböző színeket vagy jelöléseket használva. Illesszünk az ábrázolt adatpontokra egyenest,
határozzuk meg a meredekségét és az y-tengelymetszetét.

A legjobbnak vélt egyenes mellett illesszük még minden mérési sorozatnál azokat az előzőtől
legjobban eltérő egyeneseket is, amelyek még „hihetőek”, azaz éppen áthaladnak nagyjából az
összes adatponton! Határozzuk meg ezek meredekségeit és tengelymetszeteit is, majd számoljuk
ki belőlük α értékének bizonytalanságát!

Adjuk meg a különböző mérési sorozatokból kapott α értékeket bizonytalanságukkal együtt.
Diszkutáljuk mérésünk pontatlanságát, írjuk le, milyen effektusok okozhatták a mérési soroza-
tok közti eltérést. Diszkutáljuk a tengelymetszetekre kapott eredményeket is.
Segítség: Az α paraméter bizonytalansága meghatározható úgy, hogy kiszámoljuk a hozzá tar-
tozó minimális és maximális értékeket, de alkalmazhatjuk a hibaterjedés szabályait is.
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ℓ0 [cm] ∆ℓ [cm] A [cm] ℓ [cm] tg φmax φmax [rad]

A mérés elvégzésére és a jegyzőkönyv megírására 120 perc áll a csapatok rendelkezésére.
Sikeres versenyzést kívánnak:

a szervezők
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Figyelem! A teljes pontszám eléréséhez nem elegendő a megoldás számszerű közlése, a mérés
lépéseit tartalmazó jegyzőkönyv és a végeredmény hibájára vonatkozó becslés is szükséges!

A mérés célja
A mérés során egy Bunsen-állványra akasztott matematikai inga lengését vizsgáljuk külön-

böző damilhosszak mellett. A damil hosszának a lengésidőhöz képest lassú változtatása esetén
bizonyos mennyiségek megmaradnak a mozgás során, ezek meghatározása a célunk.

Elméleti bevezető
A matematikai inga egy elhanyagolható tömegű, ℓ hosszúságú fonalra függesztett, m tömegű

pontszerű testből áll, amelyre szabad erőként csak a nehézségi erő hat. Az inga nyugalmi hely-
zetéhez képest egy adott időpillanatban a függőlegessel bezárt szöget nevezzük szögkitérésnek
(φ). Kis szögek esetén az inga elmozdulását vízszintessel közelítjük, és egy adott magasságban
a vízszintes kitérést (x) vizsgálhatjuk. Ennek maximuma az amplitúdó (A).

Mérési eszközök
A mérés során rendelkezésünkre áll egy Bunsen-állvány, melynek rúdjához egy gyűrű van

rögzítve. Adott még egy vékony damil, illetve két nehezék, melyekből a damilt a gyűrűhöz
csatolt dión átvetve inga készíthető. Rendelkezésre áll egy szigetelőszalag a damil jelöléséhez,
emellett adott egy vonalzó, mellyel a kitérés amplitúdója mérhető és egy milliméterpapír az
ábrázoláshoz.

Elméleti feladatok

1. feladat (5 pont)
Tekintsük a fent ismertetett matematikai ingát, amely a t = 0 pillanatban φmax ≪ 1 rad

szögkitéréssel, nyugalomból indul. Fejezzük ki a φ szögkitérést és a felfüggesztési ponton átha-
ladó, a fonálra merőleges tengelyre vonatkozó J perdületet, mint az idő függvényeit! Az időt
kiküszöbölve határozzuk meg és ábrázoljuk a φ − J síkon, azaz a fázistéren, a mozgást jellemző
trajektóriát!

2. feladat (3 pont)
Számítsuk ki a fázistérbeli trajektória által közrezárt I területet! Ez a mennyiség a rendszer

paramétereinek lassú változtatása esetén közelítőleg állandó, ezért neve adiabatikus invariáns.
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3. feladat (3 pont)
Az adiabatikus invariáns megmaradásának feltételét felhasználva vezessük le a maximális

szögkitérés logaritmusa és az inga hosszának logaritmusa közti

ln (φmax) = 1
4 ln

(
I2ℓ3

0
m2g

)
− 3

4 ln
(

ℓ

ℓ0

)

összefüggést! Itt ℓ0 a fonál kezdeti hosszát jelöli, de helyettesíthető lenne bármilyen más hosszú-
ságdimenziójú paraméterrel is.

Mérési feladatok

4. feladat (4 pont)
Kezdésként a szigetelőszalagból levágott apró darabok segítségével 10 cm-es beosztással je-

löljük meg a damilnak kb. 1 m-es szakaszát, majd készítsük el az ingát, a Bunsen-állványt az
asztal szélére helyezve. Figyeljetek arra, hogy a damil a dió csavarjának menetén haladjon ke-
resztül, hogy ne tudjon elcsúszni. A damil egyik végére kössük rá a súlyt, másik végét vessük át
az állványra szerelt dión és tartsuk kézben, hogy a hosszát változtatni lehessen. A feladat során
végig kis kitéréseket használjatok, és óvatosan változtassátok a damil hosszát, ne vágjátok el
a kezetek!

Állítsuk az inga hosszát a lehető legnagyobbra, majd mérjük meg ekkor a lelógó damil
hosszát (ℓ0). Ezután térítsük ki az ingát, és a vonalzó segítségével az asztal magasságában
olvassuk le a lengés amplitúdóját (A). Lassan rövidítve az ingát, olvassuk le a jelölések segít-
ségével, hogy különböző ingahosszakhoz mekkora amplitúdók tartoznak, ezekből és az aktuális
damilhosszból már minden releváns mennyiség meghatározható.

5. feladat (8 pont)
Végezzük el a 4. feladat lépéseit úgy, hogy a lehető legrövidebb ingával kezdünk, és folya-

matosan növeljük a damil hosszát! Ezután ismételjük meg még egyszer ezt, vagy a 4. feladat
lépéseit, ezt a döntést a csapatra bízzuk.

6. feladat (12 pont)
Az elméleti feladatok alapján az adatokat a megfelelő koordináta-rendszerben ábrázolva

egyenes illeszthető az adatpontokra. Számoljuk ki a szükséges mennyiségeket, majd ábrázoljuk
így a mérési eredményeinket. A három mérési sorozat eredményeit egy milliméterpapíron szem-
léltessük, különböző színeket vagy jelöléseket használva. Illesszünk az ábrázolt adatpontokra
egyenest, határozzuk meg a meredekségét és az y-tengelymetszetét.

A legjobbnak vélt egyenes mellett illesszük még minden mérési sorozatnál azokat az előzőtől
legjobban eltérő egyeneseket is, amelyek még „hihetőek”, azaz éppen áthaladnak nagyjából az
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összes adatpont hibatartományán! Határozzuk meg ezek meredekségeit és tengelymetszeteit is,
majd számoljuk ki belőlük ezen értékek bizonytalanságait minden mérési sorozat esetén!

A három mérési sorozatból kapott eredményeket összesítve számoljuk ki a mért meredek-
séget hibájával együtt. Hasonlítsuk össze a kapott eredményeket az elméleti feladatok során
levezetett összefüggéssel! Ha eltérést tapasztalunk, mi okozhatta azt? Diszkutáljuk a tengely-
metszetek eredményét is!
Segítség: Egy f(a1, a2, ..., an) függvény abszolút hibáját a hibaterjedésnek megfelelően az alábbi
egyenlettel számolhatjuk:

∆f(a1, a2, . . . , an) =
∣∣∣∣∣ ∂f

∂a1

∣∣∣∣∣∆a1 +
∣∣∣∣∣ ∂f

∂a2

∣∣∣∣∣∆a2 + · · · +
∣∣∣∣∣ ∂f

∂an

∣∣∣∣∣∆an.

Itt ∆ai az ai paraméter abszolút hibája.

A mérés elvégzésére és a jegyzőkönyv megírására 120 perc áll a csapatok rendelkezésére.
Sikeres versenyzést kívánnak:

a szervezők
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Táblázat
A mérési feladatok során szükség lehet adatok és azokból számított egyéb mennyiségek

lejegyzésére, ehhez nyújt segítséget az alábbi táblázat. Ennek használata természetesen nem
kötelező, a döntést az adott csapatra bízzuk.
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Elméleti feladatok

1. feladat
Az adiabatikus invariáns feladatban megadott képletét és annak mozgásállandó tulajdonsá-

gát felhasználva a szögamplitúdó kifejezhető, mint a fonál hosszának függvénye:

φmax = 4

√
I2

m2gπ2 · ℓ−α. (1)

Mindkét oldal természetes alapú logaritmusát véve a következő összefüggésre jutunk:

ln (φmax) = 1
4 ln

(
I2

m2gℓ4απ2

)
. (2)

A jobb oldali logaritmus argumentumában szereplő törtet bővíthetjük a kezdeti ℓ0 fonálhossz
4α-dik hatványával. Ezt követően logaritmikus azonosságokat felhasználva a jobb oldal különb-
séggé alakítható:

ln (φmax) = 1
4 ln

(
I2

m2gℓ4α
0 π2

)
− α ln

(
ℓ

ℓ0

)
. (3)
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Mérési feladatok
Minden damilhossz esetén feljegyeztük az amplitúdókat az utasításoknak megfelelően, ezek

az 1. táblázatban láthatóak.

ℓ0 [cm] ∆ℓ [cm] A [cm] ℓ [cm] tg φmax φmax [rad]

57,5 10 3,6 67,5 0,063 0,063
57,5 20 3,4 77,5 0,059 0,059
57,5 30 3,2 87,5 0,056 0,056
57,5 40 2,9 97,5 0,050 0,050
57,5 50 2,6 107,5 0,045 0,045
55,5 10 3,7 65,5 0,067 0,067
55,5 20 3,4 75,5 0,061 0,061
55,5 30 3,0 85,5 0,054 0,054
55,5 40 2,7 95,5 0,049 0,049
55,5 50 2,5 105,5 0,045 0,045
55,5 10 4,9 65,5 0,088 0,088
55,5 20 4,5 75,5 0,081 0,081
55,5 30 4,1 85,5 0,074 0,074
55,5 40 3,6 95,5 0,065 0,065
55,5 50 3,2 105,5 0,058 0,058

1. táblázat. Bal oldalon a három mérési sorozat eredménye, ahol ℓ0 a vonalzó és a felfüggesztés
távolsága, ∆ℓ a vonalzó és a súly távolsága, A a vonalzón mért kitérés. Jobb oldalon az ezekből
számolt adatok: az ℓ teljes lengési hossz, valamint a φmax maximális kitérési szög és annak
tangense.

A vonalzó magasságában a damilhossz ℓ0, így a φmax szöget az alábbi módon számolhatjuk:

φmax = arctg
(

A

ℓ0

)
. (4)

A (3)-as egyenletnek megfelelően az ln φmax értékeket ln(ℓ/ℓ0) függvényében ábrázolva kapjuk
az 1. ábrát.
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1. ábra. A mért maximális szögkitérés logaritmusa ábrázolva a damilhossz logaritmusának függ-
vényében mindegyik mérési sorozat esetén. A satírozott 1σ-sáv jelöli az illesztés bizonytalansá-
gát.

Az illesztésből meghatározható a meredekség, ez látható a 2. táblázatban. A meredekség hibáját
mi numerikusan az illesztésből becsültük; a versenyzőktől a két „még éppen illeszkedő egyenes”
illesztése volt elvárt, ezek meredekségével becsülhetjük a hibát.

α ∆α

1. mérés 0,66 0,09
2. mérés 0,84 0,05
3. mérés 0,86 0,08

2. táblázat. A különböző méréssorozatokra illesztett α értékek és hibáik.

A három mérési sorozatot átlagolva kapjuk a végeredményünket:

α = (0,78 ± 0,07). (5)

Az illesztésekből a függőleges tengelymetszet is meghatározható, ez jól láthatóan eltér a három
mérési sorozat esetén. Mivel ez függ a kezdeti szögamplitúdótól, így nem meglepő a kapott
eredmény. Az is látható, hogy a tengelymetszet nem zérus, ez is egyezik a várakozásainkkal.
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Elméleti feladatok

1. feladat
A fonálinga általános mozgása igen bonyolult, és felsőbb matematikai eszközöket igényel,

azonban az általunk vizsgált kis kitérésű határesetben a mozgásegyenlet jól ismert módon a har-
monikus rezgőmozgás alapegyenletére redukálódik. Ekkor a szögkitérés időfüggése egyszerűen
kifejezhető:

φ(t) = φmax cos (ωt) . (1)

Itt ω =
√

g/ℓ a rezgőmozgás körfrekvenciája. A pillanatnyi szögsebesség a fenti összefüggés
időderiváltjaként, vagy pedig a rezgőmozgás nevezetes összefüggéseinek ismeretében kapható:

φ̇(t) = −φmaxω sin (ωt) . (2)

A perdület pedig ezen szögsebesség és a testnek a forgástengelyre vonatkoztatott mℓ2 tehetet-
lenségi nyomatéka szorzataként adódik:

J = mℓ2φ̇ = −mℓ2φmaxω sin (ωt) . (3)

Az (1) és (3) egyenletekből a szögfüggvényeket kifejezve, továbbá a sin2(ωt)+cos2(ωt) = 1 trigo-
nometriai összefüggést felhasználva az idő kiküszöbölhető. Rendezés után az alábbi egyenletre
jutunk:

φ2

φ2
max

+ J2

(mℓ2φmaxω)2 = 1 . (4)

Ez jól láthatóan egy ellipszis egyenlete, amelynek főtengelyei rendre φmax és mℓ2φmaxω. A
trajektóriát ábráolhatjuk is a φ − J síkon, ezt az 1. ábra mutatja.

−6 −4 −2 0 2 4 6
φ [◦]

−0,4

−0,2

0

0,2

0,4

J
[k

g
·m

2 /
s]

1
1. ábra. A rendszer fázistérbeli trajektóriájának ábrázolása m = 100 g, ℓ = 40 cm és különböző
φmax szögamplitúdók mellett. A φmax = 5◦ esetet vastaggal jelöltük.
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2. feladat
Az adiabatikus invariáns a megadott definíció szerint az előző feladatban kapott ellipszis

területe, azaz a féltengelyek szorzatának π-szerese. Behelyettesítve:

I = mℓ2φ2
maxωπ. (5)

Felhasználva továbbá a körfrekvenciára vonatkozó, korábban már említett ω =
√

g/ℓ összefüg-
gést, az adiabatikus invariáns kifejezhető a rendszer alapvető paraméterei és a szögamplitúdó
segítségével:

I = mg1/2ℓ3/2φ2
maxπ . (6)

3. feladat
Az adiabatikus invariáns (6) képletét és annak mozgásállandó tulajdonságát felhasználva a

szögamplitúdó kifejezhető, mint a fonál hosszának függvénye:

φmax = 4

√
I2

m2gπ2 · ℓ−3/4. (7)

Mindkét oldal természetes alapú logaritmusát véve a következő összefüggésre jutunk:

ln (φmax) = 1
4 ln

(
I2

m2gℓ3π2

)
. (8)

A jobb oldali logaritmus argumentumában szereplő törtet bővíthetjük a kezdeti ℓ0 fonálhossz
köbével. Ezt követően logaritmikus azonosságokat felhasználva a jobb oldal különbséggé alakít-
ható:

ln (φmax) = 1
4 ln

(
I2

m2gℓ3
0π

2

)
− 3

4 ln
(

ℓ

ℓ0

)
. (9)
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Mérési feladatok
Minden damilhossz esetén feljegyeztük az amplitúdókat, ezek az 1. táblázatban láthatóak.

Az egész mérés során csak ennek a két paraméternek a hibája terjed.

ℓ0 [cm] ∆ℓ [cm] A [cm] ℓ [cm] tg φmax φmax [rad]

57,5 10 3,6 67,5 0,063 0,063
57,5 20 3,4 77,5 0,059 0,059
57,5 30 3,2 87,5 0,056 0,056
57,5 40 2,9 97,5 0,050 0,050
57,5 50 2,6 107,5 0,045 0,045
55,5 10 3,7 65,5 0,067 0,067
55,5 20 3,4 75,5 0,061 0,061
55,5 30 3,0 85,5 0,054 0,054
55,5 40 2,7 95,5 0,049 0,049
55,5 50 2,5 105,5 0,045 0,045
55,5 10 4,9 65,5 0,088 0,088
55,5 20 4,5 75,5 0,081 0,081
55,5 30 4,1 85,5 0,074 0,074
55,5 40 3,6 95,5 0,065 0,065
55,5 50 3,2 105,5 0,058 0,058

1. táblázat. Bal oldalon a három mérési sorozat eredménye, ahol ℓ0 a vonalzó és a felfüggesztés
távolsága, ∆ℓ a vonalzó és a súly távolsága, A a vonalzón mért kitérés. Jobb oldalon az ezekből
számolt adatok: az ℓ teljes lengési hossz, valamint a φmax maximális kitérési szög és annak
tangense.

A vonalzó magasságában a damilhossz ℓ0, így a φmax szöget az alábbi módon számolhatjuk:

φmax = arctg
(

A

ℓ0

)
. (10)

A hibaterjedés képletét felhasználva:

∆φmax =
∣∣∣∣∣∂φmax

∂A

∣∣∣∣∣∆A +
∣∣∣∣∣∂φmax

∂ℓ0

∣∣∣∣∣∆ℓ0. (11)

Elvégezve a deriválásokat, megkapjuk φmax hibáját:

∆φmax = ℓ0∆A + A∆ℓ0

ℓ2
0 + A2 . (12)
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Könnyen látható, hogy
∆(ln φmax) = ∆φmax

φmax
. (13)

A (9)-es egyenletnek megfelelően az ln φmax értékeket ln(ℓ/ℓ0) függvényében ábrázolva kapjuk
az 2. ábrát. Ezen feltüntettük ln φmax hibáit is.

2. ábra. A mért maximális szögkitérés logaritmusa ábrázolva a damilhossz logaritmusának függ-
vényében mindegyik mérési sorozat esetén. A satírozott 1σ-sáv jelöli az illesztés bizonytalansá-
gát.

Az illesztésből meghatározható a meredekség, ez látható a 2. táblázatban. A meredekség hibáját
mi numerikusan az illesztésből becsültük; a versenyzőktől a két „még éppen illeszkedő egyenes”
illesztése volt elvárt, ezek meredekségével becsülhetjük a hibát.

α ∆α

1. mérés 0,66 0,09
2. mérés 0,84 0,05
3. mérés 0,86 0,08

2. táblázat. A különböző méréssorozatokra illesztett α értékek és hibáik.
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A három mérési sorozatot súlyozott átlagából kapjuk a végeredményünket:

α = (0,81 ± 0,04) . (14)

Ez hibahatáron belül egyezik az elméleti várakozásunkkal, jó volt tehát a modellünk. Az illesz-
tésekből a függőleges tengelymetszet is meghatározható, ez jól láthatóan eltér a három mérési
sorozat esetén. Mivel ez függ a kezdeti szögamplitúdótól, így nem meglepő a kapott eredmény.
Az is látható, hogy a tengelymetszet nem zérus, ez is egyezik a várakozásainkkal.
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A XIX. Dürer Verseny (2025-2026) döntőjének eredményei - F kategória
Kifejtős forduló Mérési 

forduló Össz.
Hely Csapatnév Tagok Évf. Iskola Felkészítő tanárok 1. 2. 3. 4. 5. Σ

1. .
Vojcsik Liliom

Malinkó Dioméd
Hornyák Zalán Zétény

12.
12.
11.

Földes Ferenc Gimnázium; Miskolc Biró István, Pál Mihály, 
Kovács Benedek 7 14 8 12 41 26 67

2. Dormientes
Szabó András

Ďurčovič Ádám
Klenkó Éva Borbála

11.
12.
11.

Selye János Gimnázium; Komárom Hevesi Anikó, Vörös 
Marianna 11 1 7 9 12 40 25 65

3. 枇杷膏
Bana Ilona

Papp Gábor
Horváth Botond

11.
11.
11.

Budapesti Fazekas Mihály Gyakorló 
Általános Iskola és Gimnázium; 

Budapest
Budapesti Fazekas Mihály Gyakorló 

Általános Iskola és Gimnázium; 
Budapest

ELTE Apáczai Csere János Gyakorló 
Gimnázium és Kollégium; Budapest

Zsigri Ferenc 9 10 9 1 10 39 24 63

4. Oldton
Szabó András

Szilágyi Balázs
Hartai Boglárka

12.
12.
11.

Földes Ferenc Gimnázium; Miskolc Biró István 8 0 0 9 12 29 31 60

5. Team PP
Palatinszky Ábel

Gerlei Dániel
Bibok Zsófia Erika

12.
11.
12.

Városmajori Gimnázium; Budapest Palkovics Péter 11 0 8 3 9 31 28 59

6. rázórosta
Tasnádi Zsófia

Lázin Vince
Szeidemann Ábel

12.
11.
12.

Eötvös József Gimnázium és Kollégium; 
Tata Szeidemann Ákos 9 0 7 5 4 25 32 57

7. Apáczai fizikusai
Pozsonyi Márk
Serfőző Antal

Moravcsik Emese

11.
11.
11.

ELTE Apáczai Csere János Gyakorló 
Gimnázium és Kollégium; Budapest Szentivánszki Soma 9 6 1 5 4 25 30 55

8. CsomóKúp
Ferencz Kevin
Jen Lilla Laura
Tarján Ferenc

11.
11.
12.

Békásmegyeri Veres Péter Gimnázium; 
Budapest

Marsiczki Roland, 
Csikós Viktória 8 2 1 2 12 25 23 48

9. citromfa
Galuska-Tomsits Ádin
Bischoff Ervin Vilmos

Bubálik Nóra

12.
12.
11.

Városmajori Gimnázium; Budapest Palkovics Péter 4 0 3 2 12 21 21 42

10. Dr. Oetker
Árpási Sarolta
Hegedűs Márk

Parditka Farkas Lel

11.
11.
11.

ELTE Apáczai Csere János Gyakorló 
Gimnázium és Kollégium; Budapest

Szentivánszki Soma 
János 3 9 0 1 13 26 39



A XIX. Dürer Verseny (2025-2026) döntőjének eredményei - F+ kategória
Kifejtős forduló Mérési 

forduló Össz.
Hely Csapatnév Tagok Évf. Iskola Felkészítő tanárok 1. 2. 3. 4. 5. Σ

1. A kos
Erdélyi Dominik

Tóth Kolos Barnabás
Pázmándi József Áron

12.
12.
10.

Budapesti Fazekas Mihály Gyakorló Általános 
Iskola és Gimnázium; Budapest

Budapest V. kerületi Eötvös József Gimnázium; 
Budapest

Budapesti Fazekas Mihály Gyakorló Általános 
Iskola és Gimnázium; Budapest

Schramek Anikó, 
Sarkadi Tamás, Beke 
Márton, Csóka Péter, 

Bencz Benedek, 
Szentgyörgyi Ádám, 
Skaper Zsigmond, 

Elekes Dorottya

12 12 9 7 9 49 31 80

2. Szilvás buktát, mert 
azt szeretem

Papp Emese Petra
Hetényi Lőrinc
Takách Máté

11.
11.
12.

ELTE Apáczai Csere János Gyakorló 
Gimnázium és Kollégium; Budapest

Basa István, Deák 
Márta, Gyertyán Attila, 

Szentivánszki Soma
6 10 10 10 8 44 32 76

3. Petit Napoleon
Elekes Panni

Vincze-Pál András
Zádori Gellért

11.
12.
12.

Budapest-Fasori Evangélikus Gimnázium; 
Budapest

Budapest-Fasori Evangélikus Gimnázium; 
Budapest

Szegedi Radnóti Miklós Kísérleti Gimnázium; 
Szeged

Izsa Éva, Mike Péter, 
Rácz Ildikó 8,5 1 9 4 7,5 30 32 62

4. Gigamegapingvinek
Tajta Sára

Czirják Márton
Szabó-Komoróczki 

Csenge

12.
12.
11.

Budapesti Fazekas Mihály Gyakorló Általános 
Iskola és Gimnázium; Budapest

Csefkó Zoltán, Dr. Nagy 
Piroska Mária, Ábrám 

László, Schramek Anikó
13 1 7 7 3 31 28 59

5. Főnix
Zólomy Csanád Zsolt
Beke Márton Csaba

Mondovics Gábor Dániel

12.
12.
11.

Budapesti Fazekas Mihály Gyakorló Általános 
Iskola és Gimnázium; Budapest

Budapesti Fazekas Mihály Gyakorló Általános 
Iskola és Gimnázium; Budapest

ELTE Radnóti Miklós Gyakorló Általános Iskola 
és Gyakorló Gimnázium; Budapest

Schramek Anikó, Török 
László 11 - 9 3 9 32 25 57
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